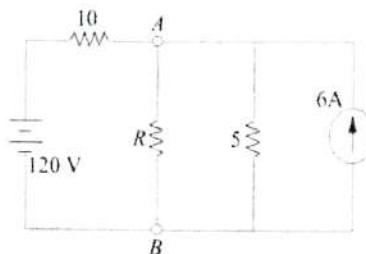


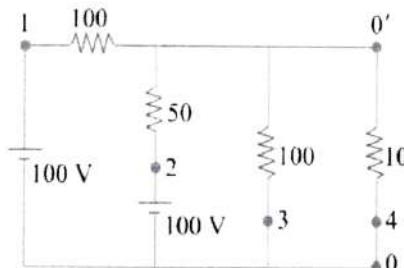
B.Tech CS/BMS/EEE (Academic Session: 2023-2024)
Fundamental of Electrical and Electronics (EE-101)

Minor Exam

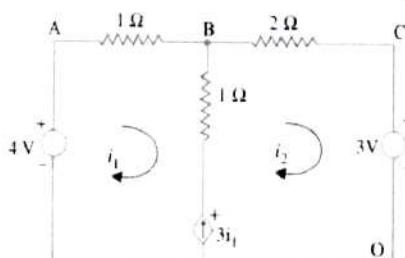
Duration: 2 Hour
Max. Marks: 40

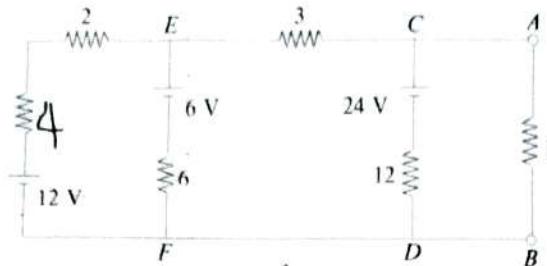

Semester - I
Faculty: Dr. Pinku Ranjan

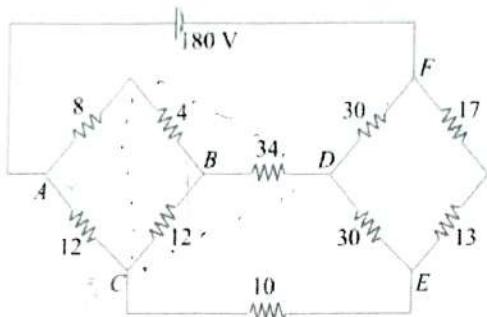
Date: 23/09/2023
Time: 10 AM -12 Noon

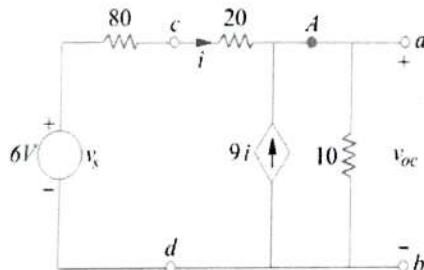

Important Instructions:

- This is a closed book, closed notes examination.
- This question paper comprises a total of 7 questions.
- All the questions are compulsory and attempt all questions in sequence.
- All notations have their usual meanings.


1. Calculate the value of R which will absorb maximum power from the circuit in below Fig., Also, compute the value of maximum power. **(5 Marks)**


2. Calculate the voltage across the $10\ \Omega$ resistor in the network below Fig. by using (a) Millman's theorem (b) any other method. **(10 Marks)**


3. Find Mesh currents i_1 and i_2 in the electric circuit in below Fig. **(5 Marks)**


✓ 4. Using Norton's theorem, compute current through the 1Ω resistor of below Fig. (5 Marks)

✓ 5. Calculate the current flowing through the 10Ω resistor in below Fig. by using any method. (5 Marks)

6. Determine the Thevenin's equivalent circuit as viewed from the open-circuit terminals a and b of the network shown in below Fig.. All resistances are in ohms (5 Marks)

7. The resistance of the wire used for telephone is 35Ω per kilometre when the weight of the wire is $5\text{ kg per kilometre}$. If the specific resistance of the material is $1.95 \times 10^{-8} \Omega\text{-m}$, what is the cross-sectional area of the wire ? What will be the resistance of a loop to a subscriber 8 km from the exchange if wire of the same material but weighing $20\text{ kg per kilometre}$ is used? (5 Marks)