

END SEMESTER EXAMINATION : JAN. 2022

APPLIED MATHEMATICS - I

Time : 3 Hrs.

Maximum Marks : 60

Note: Attempt questions from all sections as directed.
nonprogrammable scientific calculator is permitted.

SECTION - A (24 Marks)

Attempt any four questions out of five.

Each question carries 06 marks.

1. Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.
2. Solve the system of equation using Gauss Jordon method :

$$x + y + z = 3;$$

$$x + 2y + 3z = 4;$$

$$x + 4y + 9z = 6.$$

P.T.O.

(I-564)

3. Change the order of the integration and hence evaluate

$$\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dy dx}{\sqrt{y^4 - a^2 x^2}}$$

4. Find the nth derivative of $\frac{x^2}{(x-1)^3(x-2)}$.

5. Show that $\bar{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$ is irrotational. Find scalar ϕ such that $\bar{F} = \bar{\nabla}\phi$.

SECTION - B (20 Marks)

Attempt any two questions out of three.

Each question carries 10 marks.

6. Evaluate $\iint_S (x\hat{i} + y\hat{j} + z^2\hat{k}) \, dS$

where S is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane $z = 1$.

7. (a) Find the area of the region bounded by the ellipse

$\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the straight line $2x + 3y = 6$.

(6)

(b) For which value of 'b', the rank of the matrix

$$\begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{bmatrix} \text{ is } 2. \quad (4)$$

8. (a) If $z = x^3 + x^2y + y^3$, prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$.

(5)

(b) Expand $\log \sin x$ in powers of $(x - 2)$ by Taylor's theorem. (5)

SECTION - C (16 Marks)

(Compulsory)

9. (a) Using Cayley Hamilton theorem, find A^{-1} where

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}. \quad \text{Also find the matrix}$$

represented by the expression

$$A^6 - 3A^5 + A^4 - 2A^3 - 3A^2 + A - 2I. \quad (8)$$

P.T.O.

(b) Find the n^{th} derivative of $\sin^2 x \cdot \cos^3 x$. (8)