

[No. of Printed Pages - 4]

MATH211

Enrol. No. *A2305220433*

[ST]

END SEMESTER EXAMINATION : NOV.-DEC., 2021

APPLIED MATHEMATICS - III

Time : 3 Hrs.

Maximum Marks : 60

Note: Attempt questions from all sections as directed.

Use of Scientific calculator is allowed.

SECTION - A (24 Marks)

Attempt any four questions out of five.

Each question carries 06 marks.

1. Solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial y} = u$ by

the method of separation of variables subject to
 $u(0, t) = 0 = u(\pi, t)$.

2. Reduce the equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ into canonical form.

P.T.O.

3. Find the Fourier transform of $f(x)$ defined by

$$f(x) = \begin{cases} 1, & \text{if } |x| < a \\ 0, & \text{if } |x| > a \end{cases}$$

4. Form a partial differential equation by eliminating

arbitrary function f from $z = f\left(\frac{xy}{z}\right)$.

5. Obtain the half-range sine series for $f(x) = \cos x$,
 $0 \leq x \leq \pi$.

SECTION - B (20 Marks)

Attempt any two questions out of three.

Each question carries 10 marks.

6. A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points a velocity $\lambda x(l - x)$, find the displacement function $y(x, t)$ of the string.

(950)

7. (a) Find the Fourier series expansion of the periodic function of period 2π , where

$$f(x) = \begin{cases} 0, & -\pi \leq x \leq 0 \\ x, & 0 \leq x \leq \pi \end{cases} \quad (5)$$

(b) Solve $(p^2 + q^2)z^2 = x^2 + y^2$. (5)

8. Find the Fourier cosine transform of $f(x) = \frac{e^{-ax}}{x}$ and hence find $\left[\frac{e^{-ax} - e^{-bx}}{x} \right]$ where $a, b > 0$.

SECTION - C (16 Marks)

(Compulsory)

9. (a) The following table connects values of x and y for a statistical input :

x	0	1	2	3	4	5
y.	9	18	24	28	26	20

Express y in Fourier series up to first harmonic.
Also find amplitude of the first harmonic. (8)

P.T.O.

(950)

(b) Solve $(D^2 - DD' + D' - 1)z = \cos(x + 2y) + e^y$.

(8)