MID TERM EXAMINATION (November, 2019)

	(November, 2019)		
Subjec	ct Code: BAS 101		
Time: 1 ½ Hours		Subject: Applied Mathematics I	
Note: (Scienti	Q1 is compulsory. Attempt any two questions from the refice Calculator Allowed	est.	Maximum Marks: 30
Q1.			
(a)	Obtain the Fourier series expansion of $x \sin x$ as a cosine series in (0, pi). Discuss the convergence of the series $\sum \frac{1}{x^n + x^{-n}}$, $x > 0$.		(3,3,2,2)
(b)			
(c)	Find the n th derivative of $\frac{1}{x^2 - 6x + 8}$.		
(d)	Prove that Eigen values of a unitary matrix are of magnit	ude unity	
-	-3	ade diffey.	

Q2.

(a) Find the value of n so that
$$u=r^n(3cos^2\emptyset-1)$$
 satisfies the equation
$$\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right)+\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial u}{\partial \theta}\right)=0.$$
(b) Solve $x^2yz=e,xy^2z^3=e,x^3y^2z=e$ using matrices.

Q3.

- (a) Change the differential equation $x^2z_{xx}-y^2z_{yy}=0$ into one with u and v as the independent variables, where u = xy and v = x/y.
- (b) Discuss the convergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \cdots$, (x > 0)(c) If $y^{1/m} + y^{-1/m} = 2x$, prove that $(x^2 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0$.

Q4.

- (3,5,2)(a) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{\ln n}{2n^3 - 3}$.
- (b) Find the Fourier series of the periodic function f(x) of period 2, where $f(x) = \begin{cases} -1 & -1 < x < 0 \\ 2x & 0 < x < 1 \end{cases}$
- and show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$. (c) Is the matrix $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ diagonalizable?