11100	ase write your Enrollment Number) Enrollment No					
	END TERM EXAMINATION (December, 2017)					
Subj	ect Code; BCS 201 Subject: Discrete Mathemati					
	: 3 Hours Maximum Market					
Note	: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.					
Q1.						
(0)	(2x10=20) Prove or disprove, the relation R on the set of all integers y= x² is reflexive or not. Where (x,y) elements the set of their digits equal to 15? Define m-ary tree.					
	Prove by mathematical induction that n < = 3° for n ∈ N.					
(e)	Prove that the number of edges in a bipartite graph with n vertices is at most n²/4.					
(f)	List the properties of lattices.					
(g)	Write down a truth table to show that $\sim (p \vee q)$ is equivalent to $(\sim p) \wedge (\sim q)$.					
(h)	How Dovetailing is used to find the depth of a tree?					
(1)	Define Bipartite graph.					
	Prove or disprove that $(p \wedge \overline{q}) \vee (p \wedge \overline{q})$ is tautology.					
	A A A A A A A A A A A A A A A A A A A					
	<u>UNIT-I</u>					
Q2.						
(a)	Solve $y_{k+2} - 16y_k = 0$, if $y_0 = 1$ and $y_1 = 2$.					
	On the set of all 2×2 real matrices, define a relation ¥ by					
	$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} $					
	[a ₂₁ a ₂₂] [b ₂₁ b ₂₂]					
	Determine if this relation is reflexive, symmetric, anti-symmetric, and/or transitive. Justify s					
	answer.					
Q3.						
(a)	Let R be an equivalence relation on set X, for each a \in X, let [a] = $\{x \in X: xRa\}$, then show that					
	{[a]: a ∈ X } is a partition of set X.					
(b)	Prove or disprove that (X,σ) is a group, where X is the set of all square matrices of order n and the matrix multiplication operation.					
Q4.	<u>UNIT-II</u>					
	How many strings of three distinct unperson letters are the stable to					
	How many strings of three distinct uppercase letters are there that have no two adjacent let that are adjacent in the alphabet? (e.g. BIG is correct, but <u>HIT and RED</u> are not.)					
(0)	Confirm or disprove that the propositional logic $[\{p \to (q \lor r)\} \land (\overline{q})] \to (p \to r)$ contradiction.					
Q5.						
-	Identify systems plaments in the fallencies December 1					
(a)	Identify extreme elements in the following Posets: The divisors of 60 prefered by divisibility					
	and the second of the second o					
(b)	ii. The set {a, b, c, d, e, f, g, h}, ordered like the subsets of {0, 1, 2} Draw the Hasse diagram for the poset of the divisors of 59. Is this poset totally ordered? How 0					
V-7	the shape of the diagram relate to the prime factorization of 59? Explain.					
-2-2	<u>UNIT-III</u>					
Q6.						
(a)	Find a recurrence relation for the number of ways to make a pile of n chips using garnet, gold,					
	white and blue chips such that no two gold chips are come together.					
	P.					

(b) Construct the disjunctive normal form of the proposition: 1-1 (p < q) Q7. (a) Suppose x is a real number. Consider the statement. If $x^2 = 4$, then x = 2(5,5) Construct the converse, the inverse, and the contrapositive. Determine the truth or falsity of the four statements: the original statement, the converse, the inverse, and the contrapositive. (b) What is Defuzzification? Explain the rules of defuzzification. UNIT-IV Q8. (a) Give an example of a connected graph which has neither Euler circuit and nor Hamiltonian circuit. Under what condition does complete graph Kn has (i) Euler circuit

(ii) Hamiltonian circuit

(b) If G is a connected planar graph with e edges, v vertices and r be the number of regions in a planar representation of G, then prove that r = e - v + 2. (a) Let δ and Δ denote the minimum and the maximum degrees of the vertices of a graph G = (V, E) with |V| = p and |E| = q. Show that δ ≤ 2c/p ≤ Δ
 (b) Solve the following LPP using simplex algorithm.
 Max Z = 12x₃ + 6x₂ + 4x₃
 S. t. 4x + 5x₂ + 4x₃ s. t. $4x_1 + 2x_2 + x_3 \le 25$ $2x_1 + 3x_2 + 3x_3 \le 50$ $x_1 + 3x_2 + x_3 \le 45$ $x_1, x_2, x_3 \ge 0$

END TERM EXAMINATION (December, 2018)

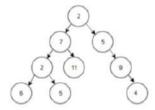
Subject Code: BCS 201	Subject: Discrete Mathematic
Time: 3 Hours	Maximum Marks: 60
Note: Attempt all questions internal choice are given.	Dist. II. St. R. H. Smith St. Line
Q1.	
(a) What is Lagrange's theorem with respect to algebraic sys	tem? (5x4=20)
(b) Explain	(384-20)
(i) Equivalence class with example.	
(ii) Partition of a set with example.	
(b) What is "argument"? When it is valid? Explain with example	ple.
(c) What is Ring? When it is called Ring with Zero divisors?	
Q2.	(10)
(a) For any positive integer m, D _m denotes the set of divisor	
the Hasse diagram for m=64 and find out minimum, maxis	mum, first and last element.
(b) Define what is group? Let Z _m denotes the integers modulo	m. Find out whether Z _m is group or
not under the operation addition & multiplication.	
OR	
Q3. Write short note on	(10)
(a) Graph Isomorphism & Homeomorphism	
(b) Planner Graph & Bipartite Graph	
Q4.	(10)
(a) What is Lattice? Let C be the collection of sets closed und	er union and intersection. Find out
(C,U,\Omega) is a lattice or not?	
(b) Consider a 9 X 9 sudoku problem and model it using gra	ph coloring problem. What will be
the chromatic number for this problem?	
OR OR OR	
Q5. What is fuzzy set? Explain with example, how to find the addit of two fuzzy sets. Find out α -cut set of the given fuzzy set wh	ion, subtraction and cross product
0.4/y + 0.2/z + 0.1/t + 0.9/u + 1/m + 0.35/w.	
30, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	(10)
Q6. Explain the following	(10)
(i) Integral Domain and Field	(10)
(ii) Normal Fuzzy set	
OR	
27. Define what are conditional, converse, inverse and contrapos	itive logical statements? What are
quatifiers and how they can be used with respect to propo-	sitional calculus? Explain all with
example.	(10)
Q8. Explain the following.	(10)
(i) Bounded Lattice And Complemented Lattice	e
(ii) Eularian Tour and Hamiltonian tour	
OR	
29. Explain the following.	(10)
(i) Paget Vo Taret	(10)
(i) Poset Vs Toset with example	

(Please write	ionie.	Encollment	Mumber)

2000

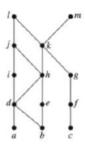
2020

Enrollment	No.	


End-Term Examination- ONLINE MODE (CBCS/Non-CBCS)(SUBJECTIVE TYPE)

Time : Note: C	t Code:< BCS 203 > 1 Hour 15 minutes 2. 1 is compulsory. Attempt any compulsory. Attempt any computer the truth table of the	Subject: < Discrete Strone question from the rest.	Maximum Marks: 30
Note: C	Q. 1 is compulsory. Attempt any o	ne question from the rest.	Widamium Widiks v Si
Q1		ne question from the rest.	
1	a) Construct the truth table of the		
1	a) Construct the truth table of the		(5*3=15
		compound proposition (n -> ~a)^(~	n <-> ~a)
t	c) Let (Z, *) be an algebraic struct	and inorder of the tree given below 15 8 7 10 11 ire, where Z is the set of integers arow that (Z, *) is a semi group. Is [Z]	12 15 14 nd the operation * is define
i.	The computer is in working state i. If the computer is operating acc	ent or not? Justify your answer usin if and only if it is operating accurat trately, then the kernel is functionit the computer is in an interrupt stat	ely. ng.
iv.	 If the computer is not in working. The computer is not in an internal 	state, then it is in an interrupt state opt state.	te.
	b)Draw all possible spanning tree raph G using Kruskal's algorithm.	of Graph G and find the minimal sp	panning tree and cost of
23			100000
10	a) Determine whether the set {Z, ot.	+, *) with operations +=addition an	(7.5+7.5= 1 id *=multiplication is a ring

DISCRETE STRUCTURES (END-TERM)


(a

- (I) Find the inverse of the function f: $R \rightarrow R$, where f(x) = x+3
- (ii) Use pigeonhole principal to show that in any set of eleven integers, there are two integers whose difference in divisible by 10.
- (b) In a pollution study of 1500 rivers, the following data were reported: 520 rivers were polluted because of Sulphur compounds, 335 were polluted by phosphates, 425 were polluted by crude oil, 100 were polluted by Sulphur and phosphates, 150 polluted by both phosphates and crude oil and 28 were polluted by Sulphur compounds, phosphates and crude oil. Using Venn diagram find out how many rivers are not polluted.
- (c) For the tree below, write preorder, in-order and post-order traversal

(a

- (i) Using Mathematical Induction prove that 52n- 25n is divisible by 7.
- (ii) For the partial order represented by the Hasse diagram find out:

- 1. Find the maximal elements
- 2. Find the minimal elements
- 3. Is there a greatest element?
- 4. Is there a least element?
- 5. Find all upper bounds of {a, b, c}
- 6. Find all least upper bound of {a, b, c}. if it exists.
- 7. Find all lower bounds of {f, g, j}
- 8. Find the greatest lower bound of {f, g, h}. if it exists

(b) Find out whether the set F of all real numbers of the type a+ $\sqrt{2}b$ where a and b are rational is a Group under addition and multiplication or not.