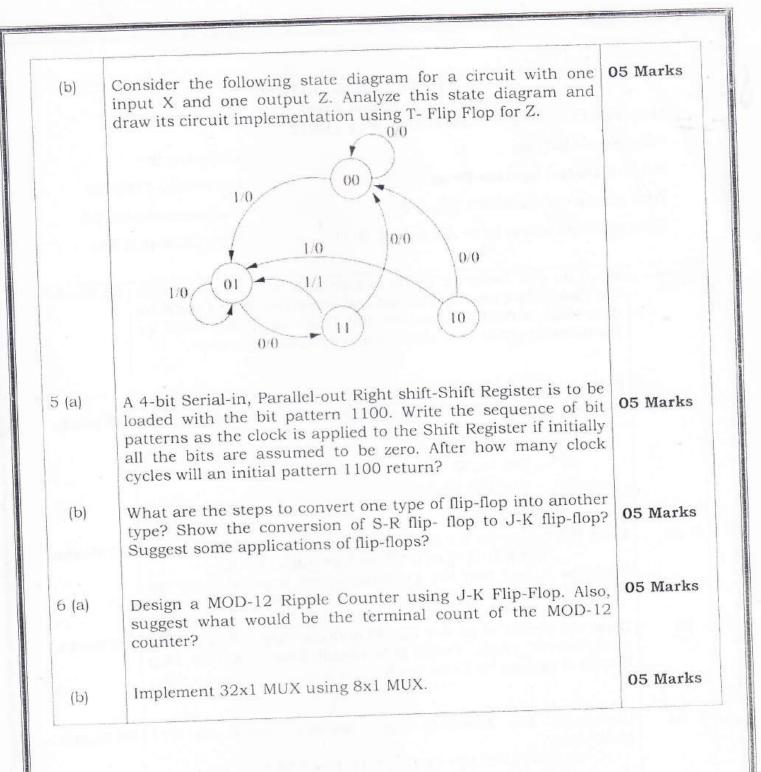
THEORY EXAMINATION

Question Paper

Month and Year of the Examination: May - 2018


Programme: B.Tech Semester: 2nd

Subject: Digital System Design Course No: ITPC 10

Total number of questions given: 6 Maximum Marks: 50

Number of Questions to be Attempted: 5 Time allowed: 3 hrs

1. (a)	What do you mean by minimum distance of a code? How is the Hamming Code word tested and corrected? Given the 8-bit data word 01011011, generate the 12-bit composite word for the hamming code that corrects and detects single error.	06 Marks
(b)	Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend: i) 11010-10000 ii) 11010-11010 iii) 100-11000 iv) 1010100-1010100	04 Marks
2. (a)	Draw the K-Map for the following expression: $F(A,B,C,D) = \sum m(1,4,7,10,13) + \sum d(5,14,15)$ Minimize it and find the Essential Prime Implicants for the obtained expression.	05 Marks
(b)	Draw the circuit of an S-R Flip Flop using NOR Gates. Modify it to include clock. Derive J-K circuit from S-R Flip Flop Circuit & explain its Truth Table.	05 Marks
3 (a)	Implement the following logic function using an 8x1 Multiplexer: $F(A,B,C,D) = \sum m(1,3,4,11,12,13,14,15)$	05 Marks
(p)	Explain the Look Ahead Carry Generator and discuss its utility in adders.	05 Marks
4 (a)	Design and implement a 4-bit BCD-to-Gray Code Converter.	05 Marks

