NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA THEORY EXAMINATION

Question Paper

Month and year: Dec. 2019 Program: B.Tech.-CS Subject: DAA Maximum Marks: 50 Number of Questions to be attempted: 5 Total no. of pages used: 2 Semester: III Course code: CSPC-21 Time allowed: 03 Hours Total No of Questions: 5

Note 1: Question No. 5 has an internal choice. Attempt any one part of it.

Note 2: Unless stated otherwise, the symbols have their usual meanings in context with subject. Assume suitably and state, additional data required, if any.

Q-1.	(a). Define Heap and analyze the complexity of min heap function.					
	(b). Explain Prim's Algorithm for minimum Spanning tree. Also compute its time complexity.	2				
	(c). Define B-Tree with its terminology. Also insert following in a B-Tree having order 3. 7, 3, 5, 11, 16, 4, 9, 2	2				
	(d). How backtracking algorithm solves the Hamiltonian problem? Explain.	2				
	(e). Write pseudo code to find strongly connected component in a graph.	2				
Q-2.	(a). Solve following recurrence relation using recursion tree method.	3				
	$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n) = T(n/3) + T(2n/3) + \theta(n). & \text{if } n > 1 \end{cases}$					
	(b). What is graph coloring problem? Write the pseudo code to color a graph and also analyze its complexity.	3				
	 (c). Write the pseudo code to solve 8-queen problem using the backtracking algorithm. Show all the steps of 4-queen problem and analyze the complexity of n-queen problem. 	4				
Q-3.	(a). Prove the master theorem.	5				
	(b). Write the algorithms to solve the rod-cutting problem. Also analyze its time complexity.	5				
Q-4.	 (a) Define the elements of the Dynamic Programming. Write all the steps to find the LCS of two string X = < ABCDGH> and Y = < AEDFHR>. 	4				
	(b) Write the pseudo code for Johnson's algorithm. Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting $w^* = \min_{(u, v) \in E} \{w(u, v)\}$, just define $\hat{w}(u, v) = w(u, v) - w^*$ for all edges $(u, v) \in E$. what is wrong with the professor's method of reweighting?	6				

		Job	J_1	J_2	J ₃	J_4	J ₅			
		Deadline	2	1	3	2	I	_		
		Profit	60	100	20	40	20			
	(b). Find the optimal parenthesis of matrix chain multiplication where sequence of dimensions is A1:10×100, A2: 100×5, A3:5×50, A4:50×20									
	(c) Explain Floyd-Warshall Algorithm to find all pair shortest path. Find all pair shortest path of following problem also analyze its complexity.									
	3 7/1 8									
	-4									
	OR									
		ority queue? 111 5, 12, 8, 7, 4, 0, 6		operation o	f HEAP-E)	XTRACT-M	AX on the h	eap A =		
6	(b) Write the pseudo code for Huffman codes. Generate the Huffman code for following symbols.									
	the second se	Symbol a	b	с	d	e f				
		Frequency 6	11	9	2	20 5				
	w: $E \rightarrow \{0,$	E) be a weighted 1, W} for som paths from a giv	e nonnega	tive integer	W. Modify	Dijkstra's	tion algorithm to	compute		
	the shortest									

÷