NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA

THEORY EXAMINATION (Re-A) Question Paper	ppear)	ROLL NO
		KB. The we
Month and Year of the Examination: Nov/Dec 2019	t by the sender is L	
Programme: B.Tech. (Information technology)	Semester.	4th
SubjectComputer Network	Course No	ITPC 26
Maximum Marks50		
Number of Questions to be attempted5	Time allowed .	3 Hours
Total No. of Questions5.	Total No. of Pa	ges used 2

Note: Assume suitably and state, additional data required, if any.

Ques1	:	 A. Differentiate between circuit switching and packet switching? B. What is hot potato routing? C. Difference between POP and IMAP D. Explain different restrictions in super netting with the help of example E. Explain count to infinity problem and its solution. 	(2X5=10)
Ques2	(a)	What are the two reasons for using layered protocols? What do you mean by link to <i>link layers of OSI reference model? Explain their functions briefly?</i>	(5)
Ques2	(b)	A binary signal is sent over a 3-khz channel whose signal-to-noise ratio is 20 db. Calculate the maximum achievable data rate?	(2)
Ques2	(c) (<)	Encode the following sequence of bits using NRZ and Manchester encoding and highlight advantage and disadvantage of each method 110100001111101	(3) (d)č 250Q
Ques3	(a)	Explain pure-ALOHA and slotted- ALOHA systems. Give the expression for throughout for each, clearly explaining the various terms. Explain 1-persistent, p-persistent and 0- persistent CSMA giving strong and weak points of each.	(5) . (6)č 2000
Ques3	(b)	Draw the IP datagram header format. "IP datagram has a checksum field still it is called an unreliable protocol". Justify?	(5) 2000
Ques4	(a)	What is DNS ? Why it is required? When a dns server receives a request, What are possible actions it can take?	. (4)

NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA

0 1 10	THEORY EXAMINATION (Re-Appear) ROLL NO.	(2)
Ques 4 (b)	On a TCP connection, current congestion window size is Congestion Window = 4 KB. The window size advertised by the receiver is Advertise Window = 6 KB. The	(3)
	last byte sent by the sender is LastByteSent = 10240 and the last byte acknowledged by the receiver is LastByteAcked = 8102 . Then find out current window size at the	Month
	sender.	Program
Ques 4 (a)	Computer Network Caurse No. ITPC 26	Soba
Ques 4 (c)	Explain leaky bucket and token bucket algorithm in detail.	umousM-
Ques 5 (a)	Consider a network with 6 routers R1 to R6 connected with links having weights as	Number (5)
Ques 5 (u) 5	shown in the following diagram:	Total
	sume suitably and state, additional data req (R4) - 7	Nete: A
	A. Differentiate between circular $\begin{pmatrix} 8 \\ R1 \end{pmatrix}$ and packet switching $\begin{pmatrix} 6 \\ R1 \end{pmatrix}$ $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ R1 \end{pmatrix}$	Quest
	C. Difference between POP an MAP	
	B. Explain count to infinity problem Ad Is solution.	1. 1.
	(R3)	
	What are the two reasons for using layered protocols? What do you mean by link to	Ques2 (a)
	Link layers of OSI reference model? Explain their lunctions briefly?	
	routing tables. Each router starts with its routing table initialized to contain an entry for each neighbour with the weight of the respective connecting link. After all the routing tables stabilize, how many links in the network will never be used for	Ques2 (b)
	carrying any data?	Ques2 (c
	highlight advantage and disadvantage of each method	(5)
Ques 5(b)	Explain link state routing in detail.	
	or	
Ques 5(a)	The original class C address was 194.17.68.1 and an ISP wants to divide this address in 4 subnets. What are range of addresses in each of the subnet	(3) 25500
	persistent and 0- persistent CSMA giving strong and weak points of each	(2)
Ques 5(b)	Which of the following IP address can be used in WAN? 10.0.0.1,172.16.0.10,15.1.5.6	(2) (2) (2) (2)
	called an unreliable protocol". Jurtify?	(5)
Ques 5(c)	Explain distance vector and hierarchical routing in detail.	
		Ques4 (a

2