Z. K

MID SEM - 2 (Physics-II PHIC 103)

B.Tech (1st year: 2nd Semester)

Time Allowed: 50 min.

Max. Marks: 20

NOTE: Attempt all the questions. Extra ANSWER SHEETS will NOT be supplied.

- Define drift speed and mobility of charge carriers in a semiconductor. Discuss the temperature effect on mobility with relevant graph. [6]
- 2. Consider an n-type GaAs sample at T = 300 K with $N_d = 10^{16}$ cm⁻³. If $\mu_n = 8500$ cm²/V-s and $\mu_p = 400$ cm²/V-s. Estimate the drift current density and conductivity when the applied electric field is E = 10 V/cm. [4]
- 3. Sketch a neat and well labelled band diagram for PN-homojunction under equilibrium. Also show the charge carrier density, Electric field and Electric potential profile for the unbiased situation. No description required. [6]
- 4. Calculate the built-in voltage V_{B1} in a silicon PN junction at T = 300 K with doping concentrations $N_a = 2 \times 10^{17}$ cm⁻³ and $N_d = 10^{15}$ cm⁻³. The intrinsic carrier concentration for Silicon is 1.5×10^{10} cm⁻³. [4]