Roll No......5130.....

NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA FINAL EXAMINATION (B.Tech. 2nd SEM, ECE branch)

Month and year of the examination: MAY 2024

Total No of pages used: 02

Subject and Code: PHYSICS - II (PHIC 103)

Maximum Marks: 50

Time Allowed: 3 Hrs

 Attampt All the questions. Write your BRANCH and SUBSECTION at the top of the Answer booklet.

- Draw relevant, neat and well labelled diagrams wherever necessary. Symbols and constants
 have their usual meaning.
- Be precise while answering the short questions. Assume suitable parameters and constants, if not given.
- Any Electronic device (except SCIENTIFIC CALCULATER) are strictly prohibited in the duration of the examination.

Useful constants: $\epsilon_0 = 8.854 \times 10^{-12} \, \text{F.m}^{-1}$; $k_B = 8.617 \times 10^{-5} \, \text{eVK}^{-1}$; $h = 4.136 \times 10^{-15} \, \text{eV.s}$; $m_e = 9.1 \times 10^{-31} \, \text{Kg.}$

- (a) Explain why a semiconductor with a small energy bandgap but having narrow energy bandwidth is an insulator. [2]
- (b) Explain with justification, why silicon having dimond like crystal structure is opaque but diamond itself is transperant for visible radations. [3]
- (c) What is a heterojunction? Using band diagrams show the three possible situations of heterojunction formation. [3]
- (d) Calculate the internal pinch off voltage of an n-channel JFET, If the doping concentrations are N_a = 10¹⁸ cm⁻³ and N_d = 10¹⁶ cm⁻³. The channel thickness is a ≈ 75 μm. [2]
 h = 11.7
 Concentrations are N_a = 10¹⁸ cm⁻³ and N_d = 10¹⁶ cm⁻³. The channel thickness is a ≈ 75 μm. [2]

Write short notes on (i) E-k diagram, (ii) Brillouin zone schemes and (iii) Effective mass of electrons and holes. [3+3+4]

OR

- (a) In the Kronig-Penney model, $f(a) = P \frac{\sin aa}{aa} + \cos \alpha a = \cos ka$, where $P = \frac{mV_0ab}{b^2}$, sketch f(a) and discuss the effect of P when (i) $P \to 0$ and (ii) $P \to \infty$, [5]
- (b) For the E-k relationship $E = \frac{\hbar^2}{3m}\cos(k)$, preapre a table for effective mass and group velocity for (i) k = 0, (ii) $k = \frac{\pi}{2}$, (iii) $k = \pi$, (iv) $k = \frac{3\pi}{2}$, (v) $k = 2\pi$. [5]

3.	Describe details of the experimental technique used for determining the majority carrier concentration in semiconductor. How would you determine the nature of the extrinsic semicondutors using this technique. [8 + 2]
1.	OR
	(a) What is the physical significance of diffusion coefficient. In n-type GaAs at $T = 300 \text{ K}$, the electron concentration varies linearly from 1×10^{18} to 7×10^{17} cm ⁻³ over a distance of 0.10 cm. Calculate the diffusion current density and mobility if the electron diffusion coefficient is $D_n = 225 \text{ cm}^2/\text{s}$. $[1 + 4]$
	(b) Write short notes on Excess carrier generation and recombination mechanims. [5]
4.	(a) Whats is built-in voltage V _{BI} . Deduce the expression of V _{BI} for the case of a pn homojunction. How this expression gets modified in the case of (i) p ⁺ n homojunction and (ii) n ⁺ p homojunction [6]
7	(b) Discuss the salient features of "Electron affinity model". Draw the well lablled energy-band diagram of an nN heterojunction under equilibrium. [4]
5.	(a) What is the difference between enhancement mode and depletion mode MOSFET? Explain these modes with relevant device design structure. [3] OR
	Explain with diagrams, why is the drain current still non zero, when the channel gets pinched off at the drain terminal of a p 1 JFET. [3]
	(b) Explain how compound semiconducting materials are considered superior in comparison to the elemental semiconducting materials. [3]
7	(c) What do you mean by channel pinch off. Draw the cross-section and I_D versus V_{DS} curve, when $V_{GS} < V_T$ for (i) small V_{DS} , (ii) larger V_{DS} , (iii) $V_{DS} = V_{DS}$ (sat), and (iv) $V_{DS} > V_{DS}$ (sat). [4]

5(d) ++'

cc