Reg. No.:	
Name :	

Mid-Term Examinations – August 2021

Programme	: B.Tech. [BCE]	Semester	:	Fall 2021-22
Course	: Engineering Physics	Code	:	PHY1001
Faculty	: Dr. Suchetana Sadhukhan	Slot/ Class No.	:	A11+A12+A13/ 0036
Time	: 1 ½ hours	Max. Marks	:	50

Answer all the Questions

Q.No.	Sub. Sec.	Question Description	Marks
1		A block A has a mass of 8 kg and is at rest on a frictionless horizontal surface. A 4-kg mass B is attached to a rope as shown in figure. Determine the acceleration of the mass B and the tension in the cord. The pulley is frictionless.	10
2		Assume a large hand wheel as shown in the figure. The man, who operates it, exerts a force of 150 N on each side of a large wheel (80cm diameter) thus produces a force couple, as shown the second figure. Calculate the moment of the force couple. $F_B = 150 \text{ N}$	10
3		Replace the following classical mechanical expressions with their corresponding quantum mechanical operators. a. K.E. = $1/2*mv^2$ b. p = mv c. total energy E=K.E+P.E	10

4	Consider an infinite square well with wall boundaries x=0 and x=L. Show the energy eigenvalues, wavefunction and its probability density distribution for the first five excited states of an electron.	
5	Explain why the surface area to volume ratio is important in nanophysics and calculate this ratio for a sphere of diameter 30 μm .	10
	근 근 근	