Reg. No.: Name :

Mid-Term Examinations - October 2021

Programme	:	B. Tech.	Semester	:	Fall 2021-22
Course	:	Electric Circuits & Systems	Code	:	EEE1001
Faculty	:	Mr. Amit Kumar Singh	Slot/ Class No.	:	A11+A12+A13/0600
Time	:	1 ½ hours	Max. Marks	:	50

Answer all the Questions

Q.No. Sub. Sec. Question Description Marks

1 (a) Derive the condition for the maximum power transfer in a given circuit.

(b) Determine the value of R_L for the maximum power transfer as shown in Figure 1, also find the maximum power transferred to the load.

- 2 (a) A series *RLC* circuit with L = 160 mH, C = 100 μ F, and $R = 40.0\Omega$ is connected to a sinusoidal voltage $V(t) = 40 \sin \omega t$, with $\omega = 200$ rad/s.
 - 1. What is the impedance of the circuit?
 - 2. Let the current at any instant in the circuit be $I(t) = I0 \sin(\omega t \varphi)$. Find I0.
 - 3. What is the power factor?

Sub.

Using superposition theorem, determine the current I_2 through $R_2 = 12 \text{ K}\Omega$ resistor for the circuit shown in Figure 2.

Figure 2

4

3 (a) Determine the value of " V_0 & I" in the circuit shown in Figure 3 considering the diodes approximate ideal.

Figure 3

(b) Determine the output waveform (V_0) in the network shown in Figure 4 and calculate the output D.C level and required PIV of each diode?

- 4 (a) Draw the input/ output characteristics of the CE configuration NPN transistor made up with silicon. Also define the term I_{CEO}
 - (b) Explain the working of n-channel D-MOSFET with the transfer characteristics curve
- Design a combinational logic circuit with 3 input variables that will produce logic '1' output when more than one input variables are at logic '0'.
 - (b) Minimize the following Boolean function using K-map and realize it using NAND gates only

F (A, B, C, D) =
$$\sum (0.2.5.7.11.14)$$

 $\sim \sim$

4

6

5

5

5