Reg. No.:

Name

MID TERM EXAMINATIONS - April 2023

Programme	:	B.Tech.	Semester	:	Summer 2022-23
Course Title/ Course Code	:	Applied Numerical Methods / MAT2003	Slot	:	C21+C22+C23+C24+C25
Time	:	1 ½ hours	Max. Marks	:	50

Answer all the Questions

Question Description Q.No. Marks Solve the following system of equations by Gauss elimination method with the 1 concept of partial pivoting. $\begin{bmatrix} 2 & 2 & 1 \\ 4 & 2 & 3 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ 10

Derive the rate of convergence of Gauss-Seidel method for the following system of 2 equations

$$-3x + y = 2
2x - 4y + z = 0
2y - 3z = -1$$
10

Write any two differences between direct method and iterative method. Derive the 3

order of convergence of following iterative method.
$$x_{n+1} = \frac{x_n}{2} + \frac{a}{x_n} \text{ converges to } a\sqrt{2}.$$

- Approximate a positive root of equation $10 \int_0^x e^{-x^2} dt 1 = 0$, correct up to four 4 decimal places using secant method.
- Approximate the f(1.2) and f(2.8) using Newton divided difference interpolation. 5 Here f is given by the following data.

х	0	1	3	6
f(x)	1	4	39	250

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

10