Reg. No.:
Name :

TERM END EXAMINATION (TEE)-DEC-2021

Programme	B.Tech. (All Branches)	Semester	Fall 2021-22
Course Name	Calculus and Laplace Transforms	Course Code	MAT1001
Faculty Name	Dr. Manisha Jain	Slot / Class No	A21+A22+A23 BL2021221000125
Time	1.5 Hrs.	Max. Marks	50

Answer ALL the Questions

Q. No.		Question Description				
	$PART - A - (3 \times 10 = 30 \text{ Marks})$					
1	(a)	Find the Directional Derivative of scalar function $f(x, y, z) = \sqrt{xyz}$ at the point A(2,2,3) in the direction of the outward drawn normal of the surface of the sphere having radius 6 cm through the point P	10			
	OR					
	(b)	Evaluate the Integral $ \int_{0}^{1} \int_{y\sqrt{3}}^{\sqrt{4-y^2}} \sqrt{x^2 + y^2} dxdy $ (1) Draw the region (2) High light all important points	10			
2	(a)	Verify Gauss Divergent Theorem $\overline{A} = 4xi - 2y^2j + z^2k$ taken over the region bounded by $x^2 + y^2 = 4$, $z = 0$ and $z = 3$	10			
	OR					
	(b)	If $\overline{A} = (2x^2 - 3z)i - 2xyj - 4xk$ and V is the closed region bounded by the planes $x = 0$, $y = 0$ and $2x + 2y + z = 4$ evaluate $\iiint (\Delta \times \overline{A}) dV$	10			

3	(a)	Solve the differential equation by using variation of parameters method (Write and highlights all important results) $(D^2 + 2D + 2)y = e^{-x} \sec^3 x$				
	OR					
	(b)	Solve the following differential equation by using Laplace Transformation	10			
		$\frac{d^2x}{dx^2} + 5\frac{dx}{dx} + 6x = 5e^t; x(0) = 2; x'(0) = 1$				
	Part - B - $(2 \times 10 = 20 \text{ Marks})$					
4		Calculate the integral $\int_{2}^{4} \int_{0}^{x+y} z dx dy dz$	10			
		i. Describe the functions properlyii. Draw the figure				
		ii. Draw the figureiii. Correct the order of integration if required				
5	(a)	Solve the differential equation	10			
		$\left[x\tan\left(\frac{y}{x}\right) - y\sec^2\left(\frac{y}{x}\right)\right]dx + x\sec^2\left(\frac{y}{x}\right)dy = 0$				
	(b)	By using Laplace Transform find show that				
		$\int_{0}^{\infty} e^{-st} t^{3} \sin t dt = \frac{24s(s^{2} - 1)}{\left(s^{2} + 1\right)^{4}}$				
		Hence evaluate $\int_{0}^{\infty} e^{-t} t^{3} \sin t dt$				