Reg. No.:	
Name ·	

TERM END EXAMINATIONS (TEE) – December 2021- January 2022

Programme	: BTECH	Semester	: Fall 2021-22
Course	: Calculus and Laplace Transf	form Code	: MAT1001
Faculty	Dr. Yogesh Shukla	Slot/ Class No.	: A21+A22+A23/BL20 21221000147
Time	: 1 ½ hours	Max. Marks	: 50

Answer ALL the Questions

Q. No.	. Question Description				
	PART - A (30 Marks)				
1	(a) If $x + y = 2e^{\theta} \cos \emptyset$, $x - y = 2ie^{\theta} \sin \emptyset$, Prove that $\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$	10			
	OR				
	(b) Given graph is representation of asteroid $x^{2/3} + y^{2/3} = a^{2/3}$	10			
	R R R R R				
	(A) Find the coordinate of given graph and also labelled the graph.				
	(B) Find the total area of asteroid by integral calculus.				
2	(a) Verify divergence theorem for $\vec{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and S the surface of the cube bounded by the planes $x = 0, x = 2; y = 0, y = 2; z = 0, z = 2$.	10			
	OR				
	(b) Solve the following linear differential equation $x log x \frac{dy}{dx} + 2y = 2 log x$	10			
3	(a) Solve following Cauchy's Homogeneous Linear Differential equation: $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x\sin(\log x)$	10			
	OR				

	(b)	Solve y'' - $4y'$ + $4y$ =64 sin2t with $y(0)$ =0, $y'(0)$ =1 using Laplace transformation.	10		
	PART - B (20 Marks)				
4		If $u = f(x, y)$, $x = r\cos\theta$, $y = r\sin\theta$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ Is transformed to the form $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$	10		
5	i	Find the inverse Laplace transformation of $\frac{5s+3}{(s-1)(s^2+2s+5)}$	10		
	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$				