Reg. No.:	
Name :	

	TERM END EXAMINATIONS (TEE) – December 2021-January 2022					
Programme	B.Tech	Semester	Fall 2021-2022			
Course Name	Calculus and Laplace transforms	Course Code	MAT1001			
Faculty Name	Dr. A.Manickam	Slot / Class No	A21+A22+A23/0164			
Time	1½ hours	Max. Marks	50			

Answer ALL the Questions

Q. No.	No. Question Description			
		PART - A $- (3 \times 10 = 30 \text{ Marks})$		
1	(a) Prove that the rectangular solid of maximum volume			
		which is in inscribed in a sphere is a cube.	10	
	OR			
	(b)	Evaluate $\iiint dzdydx$, where V is the finite region of	10	
		space(tetrahedron) formed by the planes $x = 0, y = 0$,		
		z = 0 and $2x + 3y + 4z = 12$		
2	(a)	Verify the Gauss divergence theorem for	10	
		$\vec{F} = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ over the cube bounded by		
		x = 0, x = a, y = 0, y = b, z = 0 & z = c.		
	OR			
	(b)	Find $\int_C \vec{F} \cdot d\vec{r}$, if $\vec{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$ moves a particle from $(0,0,0)$ to the point $(1,1,1)$	10	
		along $x = t$, $y = t^2$, $z = t^3$		
3	(a)	Solve by using method of Cauchy's Legendre's linear differential Equations $ (x+2)^2 \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + y = 3x + 4 $	10	
		OR	1	

(b) (i). Find the Laplace Transform of the functions	10				
$e^{-2t}-e^{3t}$					
(ii) Using Laplace transform to find the value of the					
definite integral for the following functions					
$\int_0^\infty e^{-2t}t \cos t dt$					
Part - B - $(2 \times 10 = 20 \text{ Marks})$					
4 (i). The temperature at a point (x, y, z) in space is given	10				
by $T(x, y, z) = x^2 + y^2 - z$. A mosquito located					
at (4,4,2) desires to fly in such a direction that it					
gets cooled faster. Find the direction in which					
it should fly?					
(ii) In what direction from $(3,1,-2)$ is the					
directional derivative of $\phi = x^2y^2z^4$					
maximum.					
Solve $y'' - 3y' + 2y = 4e^{-t}$, given that	10				
y(0) = 2, y'(0) = 3, by using Laplace transform					
Techniques.					
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$					