Reg. No.:	
Name :	

VIT BHOPAL www.vitbhopal.ac.in								
		7	TERM END EXAMINATIONS (TEE) – 1	December 2021- Ja	nuary 2022			
Programme			B.Tech	Semester	Fall 2021-2022	Fall 2021-2022		
Course Name			Calculus and Laplace Transform	Course Code	MAT1001			
Faculty Name		ne	Dr. Navneet Kumar Verma	Slot / Class No	(C11+C12+C13	3)/0131		
Time			1½ hours	Max. Marks	50			
			Answer ALL the Q	uestions				
Q. No.			Question Description			Marks		
		•	PART - A (30 M					
1	A tree trunk of length l metres has the shape of a frustum of a circular cone with radii of its ends a and b metres where $a > b$. Find the length of a beam of uniform square cross section which can be cut from the tree trunk show that the beam has the greatest volume $\frac{8a^3l}{27(a-b)}$							
	OR							
	Change the order of integration and evaluate $\int_0^1 dx \int_{y=1}^\infty e^{-y} y^x \log y dy$ with use of proper diagram the change on diagram.					10		
			the stroke's theorem and verify this theorem					
	(a)	the surface of the region bounded by $x = 0$, $y = 0$, $z = 0$ and $2x+y+2z = 8$ which is not included on x-z plane			10			
2	OR							
	(b)		g the Legendre's homogeneous differential equation $(3x+2)^2 \frac{d^2y}{dx^2} - (3x+2)^2 \frac{d^2y}{dx^2}$		lve the given	10		
		Solve the given equations by Laplace transform						
3	(a)	$\frac{d^3y}{dt^3}$	$+2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0, where y = 1, \frac{dy}{dt}$	t=2 at t=0		10		
			OR					

(b)	i. Find the Laplace transform of $te^{-4t} \sin 3t$ ii. Find the Laplace transform of $\int_0^t \frac{\sin t}{t} dt$	10			
	PART - B (20 Marks)				
4	A condenser of capacity C is charged through the inductance L and resistance K in series and the charge q at any time t satisfies the equation $L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{q}{C}=0$. Given that L= 0.25 henry, R=250 ohms, $C=2\times10^6$ farad and that when t=0, the charge q is 0.002 coulombs, and current $\frac{dq}{dt}=0$ obtain the value of q in terms of t.	10			
5	Solve the given inverse Laplace transform by implementing convolution theorem $L^{-1}\left\{\frac{s}{\left(s^2+1\right)\!\left(s^2+4\right)}\right\}$	10			
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$					