Total Pages: 04

004204

May 2025

B.Tech. (Second Semester)

Basic Electrical Engineering

(ESC-101A/ELU-101-V)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions

(1.5 marks each) of Part A in short. Answer any

four questions from Part B in detail. Different

sub-parts of a question are to be attempted
adjacent to each other.

PartA

- 1. (a) What is the purpose of using a laminated core in a transformer?

 1.5
 - (b) Explain the duality between Thevenin's and Norton's equivalent circuits. 1.5
 - (c) Define Earthing.

1.5

- (d) What is the difference between fuse and MCB?

 1.5
- (e) How can we make a single phase induction motor self-starting?

 1.5
- (f) Define Active Power, Reactive Power,
 Apparent Power.

 1.5
- (g) What is the function of commutator in DC machines?
- (h) What are different losses in a transformer?
- (i) What are the advantages of three-phase system over single phase system?

 1.5
- (j) What is the difference between dependent and independent sources?

Part B

2. (a) Find the current through RL using Norton's Theorem in Fig.1. 7.5

C-004204

(b) Find the current through R_L by using superposition theorem in Fig 2. 7.5

- (a) Find the average value, rms value, form factor and peak factor for a half wave rectified sine wave.
 - (b) Discuss series resonance. Derive the expression of resonant frequency, bandwidth and quality factor. 7.5
 - 4. (a) Draw the phasor diagram of a single phase transformer at inductive load. 7.5
 - (b) Define voltage regulation and efficiency of a transformer and derive the expression for maximum efficiency.
 7.5
- 5. (a) Explain the construction and working of three phase induction motor.7.5
 - (b) Why synchronous motor is not self starting?

7.5

- 6. (a) Derive the expression for power and power factor in a three-phase circuit using two wattmeter method.

 7.5
 - (b) A balanced delta connected load of (12+ j9) Ω is connected to 3-phase, 400V supply. Find
 (i) line current (ii) Power Factor (iii) Power drawn (iv) Reactive volt-amperes (v) Total volt-amperes.
- 7. (a) Write a short note on 'Power factor improvement'. 7.5
 - (b) Draw and explain the working of ELCB. 7.5

1200