Roll No.

80018

December, 2019 B.Tech. I SEMESTER Reappear Basic of Electrical Engineering (EE-101C)

Time: 3 Hours Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Assume the relevant data if required. Different subparts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) Distinguish between unilateral and bilateral network. (1.5)
 - (b) Why transformer is also called the static transformer?

(1.5)

- (c) Give reason why power factor is important? (1.5)
- (d) Define reactive power. (1.5)
- (e) Explain the applications of Miliman's Theorem. (1.5)

- Draw slip-torque characteristics of three phase (1.5)induction motor.
- Make a comparison between magnetic and electric (1.5)circuit.
- Explain statically induced E.M.F. (1.5)
- Explain the advantages of three phase systems. (1.5)
- Find the Form Factor and Peak Factor of the sinusoidal (1.5)alternating current.

PART - B

- Prove that the area within the loop of a B-H curve (7) represents the hysteresis loop.
 - (b) Find i_1 , i_2 , v_1 , v_2 and power dissipated in 12 ohms (8) resistor.

- (a) A 230 V, 50 Hz ac supply is applied to a coil of 3. 0.06 H inductance and 2.5 resistance connected in
 - series with a 6.8 µF capacitor. Calculate (i) Impedance (ii) Current (iii) Phase angle between current and voltage (iv) Power factor. (8)
 - Derive an expression for the average power consumed (7)in resistive circuit.
- Derive the expression of resonance frequency and impedance in case of parallel R-L-C circuit. (b) A coil of inductance 100 μH and of self-inductance
 - 5 pF is magnetically coupled to another coil of inductance 200 µH and of self-inductance 10 pF. The co-efficient of coupling between the coil is 0.1. Calculate the effective mutual inductance between (7) them at 1 MHz.

5.

Find the current in the 5 ohms resistance using Norton's (8) theorem. 3 ohm 6 ahm 3

- (b) State the maximum power transfer theorem. Show that the condition for maximum power transfer R_L= R_{TH}. Explain its importance. (7)
- 6. (a) Explain the various losses in d.c. machine. (8)
 - (b) Explain the open circuit and short circuit on single phase transformer with diagram and find the equation for regulation on transformer. (7)
- 7. Explain the Principle of operation, constructional features and applications of Synchronous Generator. (15)