

December 2023

B.Tech(AE/CIVIL/CSE) (Re-Appear) 1ST SEMESTER
Mathematics-I(HAS-103C)

Max. Marks:75

Time: 3 Hours

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q.1(a) Find the characteristic equation for the given matrix, $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.

(b) Define similar matrices.

(c) Find the rank of the given matrix, $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.

(d) Using Taylor's series expand, e^x in powers of $(x-2)$.

(e) Find the radius of curvature at the origin for the given curve:

$$2x^4 + 4x^3y + xy^2 + 6y^3 - 3x^2 - 2xy + y^2 - 4x = 0.$$

(f) If $u = x^2 - 2y$, $v = x + y$, then prove that Jacobian i.e. $\frac{\partial(u,v)}{\partial(x,y)} = 2x + 2$.

(g) Evaluate the double integral, $\int_0^3 \int_1^2 xy(1+x+y) dy dx$.

(h) Find the area lying between the parabola $y = 4x - x^2$ and the line $y = x$.

(i) Find $\text{grad} \Phi$, when $\Phi = 3x^2y - y^3z^3$ at the point $(1, -2, -1)$.

(j) If the vector $\vec{F} = (ax^2y + yz)\hat{i} + (xy^2 - xz^2)\hat{j} + (2xyz - 2x^2y^2)\hat{k}$ is solenoidal, find the value of 'a'. $(1.5 \times 10 = 15)$

PART-B

Q.2(a) Check the consistency of the given system of equations:

$$2x + 6y = -11, 6x + 20y - 6z = -3, 6y - 18z = -1. \quad (7)$$

(b) Show that the matrix, $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ is diagonalizable. Also obtain the modal matrix. (8)

Q.3(a) If $u = \tan^{-1} \left(\frac{y^2}{x} \right)$, then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$. (7)

(b) Evaluate the integral $\int_0^1 \frac{x^\alpha - 1}{\log x} dx$ by applying differentiation under the integral sign. (8)
 $(\alpha \geq 0)$.

Q.4(a) Change the order of integration in the given integral, $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ and also evaluate after change the integral. (7)

(b) Find by triple integration, the volume of the paraboloid of revolution $x^2 + y^2 = 4z$ cut off by the plane $z = 4$. (8)

Q.5(a) Find the directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ, where Q is the point (5,0,4). (7)

(b) If $\vec{F} = (2x^2 - 3z)\hat{i} - 2xy\hat{j} - 4x\hat{k}$, then evaluate $\iiint_V \nabla \cdot \vec{F} dV$, where 'V' is bounded by the planes $x = 0, y = 0, z = 0$ and $2x + 2y + z = 4$. (8)

Q.6(a) Using Cayley-Hamilton theorem, find A^3 if $A = \begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$. (7)

(b) Given $x+y+z = a$, then find the maximum value of $x^m y^n z^p$ (use Lagrange's method of multipliers). (8)

Q7(a) State and Prove the relation between Beta and Gamma function. (7)

(b) Verify the Green's theorem in the plane for $\oint_C (2xy - x^2)dx + (x^2 + y^2)dy$, where C is the boundary of the region enclosed by $y = x^2$ and $y^2 = x$. (8)