300212

May, 2019

B.Tech. (CE/CSE/IT) II SEMESTER PHYSICS (SEMICONDUCTOR PHYSICS) - BSC-101-D

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Mary on Arr		raki-a	1
(3)	(a)	Define density of states.	(1.5)
aluq		1 :- direct handgans?	(1.5)
pure	(c)	Define Intrinsic and Extrinsic semiconductor.	(1.5)
17.11	(d)	1 1 0 II it is created?	(1.5)
TOLTA	(e)	Define spontaneous emission and stim	ulated
1.015	(d b	emission.	(1.5)
(C1)	(f)	What is joint density of states?	(1.5)

	(1.0)		
(h) To calculate the probability that an energy	state above		
$E_{\rm F}$ occupied by an electron at T = 300 K.	$E_{\rm F}$ occupied by an electron at T = 300 K. Determine		
the probability that an energy level 3 kT	above the		
Fermi energy is occupied by an electron.			
(i) Define quantum wells, wires and dots.	(1.5)		
(j) What is fabrication?	(1.5)		
() What is fabrication?	(1.5)		
PART-B			
2. (a) Explain Kroning-Penny model to in .			
(a) Explain Kroning-Penny model to introduce band gap.	e origin of		
	(10)		
(b) Prove that for Kroing-Penny potential with the lowest energy band at k = 0 is	h p << 1,		
$E = \hbar^2 p/ma^2$	(5)		
 (a) What are transition rates? Explain Fermi rule. 	s golden		
	(10)		
(b) Write short notes on photovoltaic effect.	(5)		
 Explain distribution of electrons and holes semiconductor and obtained the n_o and p_o equati 	in pure		
20 No. 10 No.	(15)		
5. (a) What is the Van der Pauw method? How carrier			
density, resistivity and Hall mobility measured	l by this		
method?	(10)		
(b) Explain Hot -point probe measurement.	(5)		
300212/560/111/152 2	13		

(g) Define Hall mobility and Hall coefficient.

6. (a) What is Heterojunction solar cell? Explain Heterojuctions and associated band-diagrams. (10)
(b) Explain (qualitatively) density of states in 1d, 2D and 0D. (5)
7. Write short notes on the following:

(a) Metal-semiconductor junction.
(b) Absorption /transmission measurement.
(c) Drude model. (15)

A San By

(1.5)