300104

December, 2019 B.TECH. (CE/CSE/IT) - Ist SEMESTER Semiconductor Physics (BSC101D)

Time: 3 Hours]

[Max. Marks: 75 the first to be the propose of an

Instructions:

- It is compulsory to answer all the questions (1.5 marks 1. each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- (a) What is drift velocity? I SHOW A BELLIATE IN
 - (b) Explain the concept of hole as a consequence of effective mass. Fredric Schools vimenting.
- (c) Why a semiconductor acts as an insulator at absolute zero? (1.5)
- (d) Assuming there are 5×10^{28} atoms/m³ in copper, determine the Hall Coefficient. (1.5)

STATE OF STATE

(f)	Differentiate between diffusion and drift mechanism for flow of electrons. (1.5)		(b)	calculate the position of Fermi level at $T = 0^{\circ}$ K and at $T = 300^{\circ}$ K if $m_h^* = 6 m_e^*$ where m_h^* and m_e^* are effective masses of hole and electrons respectively.
(g)	What do you mean by knee voltage when PN junction diode is in forward bias? (1.5)	ante dago dago		
(h)	1300 nm falls on a photo detector. On an average			Boltzmann constant $k = 1.4 \times 10^{-16} \text{ ergs/0°K}$. (8)
	6.4×10 ⁶ electron hole pairs are generated. What is the quantum efficiency of photo detector? (1.5)	4.	(a)	Explain four probe methods. Derive an equation to calculate resistivity of a thin semiconductor. (7)
(i)	What do you understand by optoelectronic devices? Give two examples. (1.5)		(b)	Distinguish between metals, semiconductors and insulators using band theory. (8)
(j)	Explain the structure of buckyballs. (1.5)			
	PART-B	5.	(a)	Explain photovoltaic effect. With required diagrams discuss construction and working of solar cell. (5)
(a)	What is the effect of periodic potential on the energy of electrons in a metal? Explain it on the basis of Kronig-Penney model and explain the formation of energy bands. (10)		(b)	What is radiative and non-radiative transition? Explain in brief the optical joint density of states. (10)
(b)	Define effective mass. Prove that it is dependent on	6.	(a)	Define following terms with respect to Light-

(5)

(10)

(5)

IP.T.O.

semiconductor devices. (i) Absorption of radiation. (ii) Spontaneous emission (iii) Stimulated emission

(b) Discuss UV-VIS method for band gap measurement

(iv) Meta stable state.

of semiconductors.

004101/490/111/1

(f) Differentiate between diffusion and drift mechanism

energy and wave vector.

004101/490/111/1

(a) Draw the energy band diagram of a metal

2

semiconductor junction and label the important quantities such as Fermi level, band bending, etc. (7)