

2024

Saumy

1/5/2024

Xtreme Ends of PPS : Repeated PYQs

https://www.linkedin.com/in/saumy1905/

1 Xtreme Ends of PPS : Repeated PYQs

Table of Contents

Question 1 __________________________________ 5

Conditional Statements ______________________ 5

Question 2 __________________________________ 8

Functions _________________________________ 8

Call by Value : ___________________________ 9

Call by Reference : _______________________ 10

Question 3 __________________________________ 10

Recursion _________________________________ 10

Recursion Basic Code _____________________ 11

Fibonacci Series Code ____________________ 12

Question 4 __________________________________ 13

Strings ___________________________________ 13

Question 5 __________________________________ 16

Bubble Sort _______________________________ 16

Sorting using Bubble Sort for ‘n’ size array ____ 17

Question 6 __________________________________ 18

Differentiate Between _______________________ 18

Question 7 __________________________________ 22

Operating System___________________________ 22

Operating System Definition _______________ 23

Goals of an Operating System ______________ 24

Functions of an Operating System __________ 24

2 Xtreme Ends of PPS : Repeated PYQs

Question 8 __________________________________ 25

Structures _________________________________ 25

Program to maintain record of ‘n’ students ____ 28

Additional Short PYQs ________________________ 29

2019 Short PYQs ___________________________ 29

Short 1 ➔ ______________________________ 30

Short 2 ➔ ______________________________ 30

Short 3 ➔ ______________________________ 31

Short 4 ➔ ______________________________ 32

Short 5 ➔ ______________________________ 32

Short 6 ➔ ______________________________ 33

Short 7 ➔ ______________________________ 34

Short 8 ➔ ______________________________ 35

Short 9 _________________________________ 36

Short 10 ➔ _____________________________ 36

2022 Short PYQs ___________________________ 37

Short 1 ➔ ______________________________ 37

Short 2 ➔ ______________________________ 37

Short 3 _________________________________ 38

3 Xtreme Ends of PPS : Repeated PYQs

Short 4 _________________________________ 39

Short 5 ➔ ______________________________ 40

Short 6 _________________________________ 40

Short 7 _________________________________ 41

2023 Short PYQs ___________________________ 41

Short 1 _________________________________ 41

Short 2 ➔ ______________________________ 42

Short 3 _________________________________ 43

Short 4 _________________________________ 43

Short 5 ➔ ______________________________ 44

Short 6 _________________________________ 44

Short 7 _________________________________ 45

Short 8 _________________________________ 46

Short 9 _________________________________ 46

Short 10 ________________________________ 46

4 Xtreme Ends of PPS : Repeated PYQs

ACKNOWLEDGMENTS

 I would like to thank Tanishttha for her insightful view

of adding more PYQs instead of only the Repeated ones as

“Agar aap sab bas unhe hi padhkar gaye to fail ho jaoge”.

 So , after that I added one more section of “Additional

PYQs” on behalf of her insights . So, after the addition of

this new section the probable chances of holding a Re on

your shoulders become less but to make it more less I also

added QR code section in them as if in case they by chance

come in the long section parts you must know the basic

insights of that topic .

 I would also like to thanks my brother Nikhil who

suggested me to make the document less formatted and

colorful. So , I changed the fancy fonts to the more

aesthetic ones like “Garamond” & “Times New Roman”.

 If there is any technical mistake in the document then

you can correct it from your end as the document is now

released.

https://www.linkedin.com/in/tanishttha-sehgal-73555b287/
https://www.linkedin.com/in/zenik/

5 Xtreme Ends of PPS : Repeated PYQs

Question 1
Conditional Statements

Write a program to find

Topic : Conditional Statements

[2019]

[March 2023]

[Dec 2023]

2019 (5 Marks) [Ques. { 2(a) }]

March 2023 (1.5 Marks) {Ques. 1(j) }

December 2023 (10 Marks) [Ques. { 2(a) }]

6 Xtreme Ends of PPS : Repeated PYQs

#include <stdio.h>

#include <conio.h>

int main() {

 int a, b, c;

 printf("a=");

 scanf("%d", &a);

 printf("b=");

 scanf("%d", &b);

 printf("c=");

 scanf("%d", &c);

 if (a > b) {

 if (a > c) {

 printf("a is greatest");

 } else {

 printf("c is greatest");

 }

 } else {

 if (b > c) {

 printf("b is greatest");

 } else {

 printf("c is greatest");

 }

 }

 return 0;

}

7 Xtreme Ends of PPS : Repeated PYQs

Note: You can write the ALGORITHM simply by

describing & explaining the above given code & the

flowchart

8 Xtreme Ends of PPS : Repeated PYQs

Question 2
Functions

Write a program to

Topic : Functions

[2022]

[March 2023]

2022 (10 Marks) [Ques. { 5(a) }]

March 2023 (10 Marks) [Ques. { 5(a) }]

December 2023 (10 Marks) [Ques. { 5(b) }]

9 Xtreme Ends of PPS : Repeated PYQs

[Dec 2023]

Call by Value :

#include <stdio.h>

// Function prototype for call by value

void swapByValue(int x, int y);

int main() {

 int num1 = 10, num2 = 20;

 printf("Before swapping: num1 = %d, num2 = %d\n", num1, num2);

 // Call the swap function by value

 swapByValue(num1, num2);

 printf("After swapping: num1 = %d, num2 = %d\n", num1, num2);

 return 0;

}

// Function to swap two numbers using call by value

void swapByValue(int x, int y) {

 int temp = x;

 x = y;

 y = temp;

}

In call by value, the values of the actual parameters

(arguments) are copied to the formal parameters of the

function. Changes made to the formal parameters inside the

function have no effect on the actual parameters outside the

function.

10 Xtreme Ends of PPS : Repeated PYQs

Call by Reference :

#include <stdio.h>

// Function prototype for call by reference

void swapByReference(int *x, int *y);

int main() {

 int num1 = 10, num2 = 20;

 printf("Before swapping: num1 = %d, num2 = %d\n", num1, num2);

 // Call the swap function by reference

 swapByReference(&num1, &num2);

 printf("After swapping: num1 = %d, num2 = %d\n", num1, num2);

 return 0;

}

// Function to swap two numbers using call by reference

void swapByReference(int *x, int *y) {

 int temp = *x;

 *x = *y;

 *y = temp;

}

Question 3
Recursion

Write a program to

In call by reference, the addresses of the actual parameters

are passed to the function, allowing the function to directly

modify the values of the variables outside the function.

11 Xtreme Ends of PPS : Repeated PYQs

Topic : Recursion

[2022]

[Dec 2023]

Recursion Basic Code
if

(

 Base Case

)

else

(

 Recursive case

)

To understand Recursion , we’ll take an example to :

#include<stdio.h>

int main()

{

int n;

int fun(int);

2022 (5 Marks) [Ques. { 5(b) }]

December 2023 (10 Marks) [Ques. { 3(b) }]

12 Xtreme Ends of PPS : Repeated PYQs

printf("n=");

scanf("%d",&n);

fun(n);

}

int fun(int n)

{

 if (n==1)

 {

 printf("Saumy");

 }

 else

 {

 printf("Saumy\n");

 fun(n-1);

 }

return 0;

}

Fibonacci Series Code
#include <stdio.h>

// Function prototype

int CalFib(int term);

int main() {

 int n, i;

 // Input the number of terms

 printf("Enter the number of terms: ");

 scanf("%d", &n);

 printf("Fibonacci series up to %d terms:\n", n);

 for (i = 0; i < n; i++) {

 printf("%d ", CalFib(i));

 }

 return 0;

}

// Recursive function to calculate nth Fibonacci number

int CalFib(int term) {

 if (term <= 1)

 return term;

 else

 return CalFib(term - 1) + CalFib(term - 2);

13 Xtreme Ends of PPS : Repeated PYQs

}

Question 4
Strings

Topic : Strings

[2019]

[Dec 2023]

2019 (8 Marks) [Ques. { 5(a) }]

December 2023 (5 Marks) [Ques. { 6(b) }]

• String is a sequence of character that is treated as

a single data item & terminated by ‘\0’ .

• ASCII value of null character is 0 .

• We use gets(string name) & puts(string name)

instead of scanf() & printf() in strings .

String function

• strlen()

• strrev()

• strlwr()

• strupr()

• strcpy()

• strcmp()

• strcat()

14 Xtreme Ends of PPS : Repeated PYQs

➢ strlen()

To calculate the length (no. of character)

#include<stdio.h>

#include<string.h>

int main()

{

 char a[20];

 int n;

 printf("Enter the string = ");

 gets(a);

 n=strlen(a);

 printf("The length of the string is %d",n);

 return 0;

}

➢ strrev()

To reverse the string

Like : Keep ➔ Peek

#include<stdio.h>

#include<string.h>

int main()

{

 char a[50];

 int n;

 printf("Enter the string = ");

 gets(a);

 strrev(a);

 printf("The reversed string is = %s",a);

 return 0;

}

➢ strcat()

To join 2 strings

#include<stdio.h>

#include<string.h>

int main()

{

 char a[20] , b[20];

 int n;

15 Xtreme Ends of PPS : Repeated PYQs

 printf("1st string = ");

 gets(a);

 printf("2nd string = ");

 gets(b);

 strcat(a,b);

 printf("join string = %s",a);

 return 0;

}

➢ strcpy()

Used to copy particular string in to another string

#include<stdio.h>

#include<string.h>

int main()

{

 char a[50],b[50];

 printf("1st string = ");

 gets(a);

 strcpy(b,a);

 printf("2nd string = ");

 puts(b);

 return 0;

}

➢ strupr()

#include<stdio.h>

#include<string.h>

int main()

{

 char a[50];

 printf("Enter the string = ");

 gets(a);

 printf("%s", strupr(a));

 return 0;

}

16 Xtreme Ends of PPS : Repeated PYQs

Question 5
Bubble Sort

Topic : Sorting

[2019]

[Dec 2023]

#include<stdio.h>

#include<string.h>

int main()

{

 int n, a[7], i, j, temp ;

 printf("Insert the element \n");

 for (i = 0; i < 7; i++)

 {

 scanf("%d", &a[i]);

 }

 for(i=0 ; i<6 ; i++)

 {

 for (j = 0; j < 6; j++)

 {

2019 (7 Marks) [Ques. { 5(b) }]

December 2023 (5 Marks) [Ques. { 5(a) }]

17 Xtreme Ends of PPS : Repeated PYQs

 if(a[j] < a[j+1]) //Reverse the operator sign to sort the provided

array in ascending order

 {

 temp = a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

 }

 printf("**********values are**********\n");

 for (i = 0; i < 7; i++)

 {

 printf("%d\n", a[i]);

 }

 return 0 ;

}

Sorting using Bubble Sort for ‘n’ size array

#include<stdio.h>

#include<string.h>

int main()

{

 int n, a[10000], i, j, temp ;

 printf("n=");

 scanf("%d",&n);

 printf("Insert the element \n");

 for (i = 0; i < n; i++)

 {

 scanf("%d", &a[i]);

 }

 for(i=0 ; i<n-1 ; i++)

 {

 for (j = 0; j < n-1; j++)

 {

 if(a[j] < a[j+1]) //Reverse the operator sign to sort the provided

array in ascending order

 {

 temp = a[j];

 a[j]=a[j+1];

18 Xtreme Ends of PPS : Repeated PYQs

 a[j+1]=temp;

 }

 }

 }

 printf("**********values are**********\n");

 for (i = 0; i < n; i++)

 {

 printf("%d\n", a[i]);

 }

 return 0 ;

}

Question 6
Differentiate Between

Topic : Theoretical

2019(i) (5 Marks) [Ques. { 7(i) }]

March 2023(i & ii) (10 Marks) [Ques. {7(i & ii)}]

December 2023(i) (5 Marks) [Ques. { 7(a) }]

19 Xtreme Ends of PPS : Repeated PYQs

[2019]

[March 2023]

[Dec 2023]

Feature

Compiler Interpreter

Processing Converts entire
program into
machine code
before
execution

Translates code line-
by-line during
execution

Output Generates
intermediate
object code or
executable file

No separate object
code generation,
directly executes
code

20 Xtreme Ends of PPS : Repeated PYQs

Execution

Speed

Generally faster
as code is
precompiled

Generally slower as
code is translated
during runtime

Error

Handling

Detects all
errors before
execution,
requires full
compilation to
detect error

Stops at first
encountered error,
easier to identify
source of error

Memory Usage Typically
requires more
memory during
compilation

Requires less
memory during
execution as code is
not precompiled

Portability Executable file
can be run on
any compatible
system without
need for source
code

Requires interpreter
installation on each
system where code
needs to run

Debugging Debugging may
be harder as
source code may
be different
from machine
cod

Easier to debug as
interpreter can
provide detailed
error message

Modification Any changes
require
recompilation of
entire program

Changes can be
made quickly
without need for
recompilation

21 Xtreme Ends of PPS : Repeated PYQs

Examples C, C++, Java Python, Ruby,
JavaScript

Usage Used for
performance-
critical
applications or
where code will
be executed
multiple time

Often used in
scripting languages
or for rapid
development/testing

Feature while Loop do-while Loop
Syntax while (condition)

{
 statement(s)
};

do
{
statement(s);
} while
(condition);

Execution Condition is
evaluated before
executing the
loop body

Condition is
evaluated after
executing the
loop body

Entry Control May not execute
loop body if
condition is
initially false

Always executes
the loop body at
least once

Exit Control May not execute
loop body if
condition is
initially false

Executes the loop
body at least
once, condition
checked after
loop body

22 Xtreme Ends of PPS : Repeated PYQs

Use Case Suitable when
loop body may
not need to be
executed at all

Suitable when
loop body must
be executed at
least once

Loop

Termination

Depends on the
condition
evaluation

Depends on the
condition
evaluation

Iteration

Control

Determined
solely by the
condition
evaluation

Condition
determines
whether to
continue or
terminate loop

Error-Prone May result in
infinite loop if
condition is never
met

Less prone to
infinite loops as
loop body always
executes at least
once

Question 7
Operating System

2019 (5 Marks) [Ques. { 7(ii) }]

2022 (1.5 Marks) [Ques. { 1(j) }]

March 2023 (10 Marks) {Ques. 3(a) }

December 2023 (5 Marks) [Ques. { 2(b) }]

23 Xtreme Ends of PPS : Repeated PYQs

Topic : Theoretical

[2019]

[2022]

[March 2023]

[Dec 2023]

Operating System Definition

An operating system (OS) is a software that acts

as an intermediary between computer hardware

and user applications. It manages hardware

resources and provides essential services to

software applications.

24 Xtreme Ends of PPS : Repeated PYQs

Goals of an Operating System

Efficiency Ease of Use Maintainability

Efficiently

utilizes

hardware

resources to

maximize

system

performance

and

responsiveness.

Provides a user-
friendly interface
for interacting
with the system
and applications.

Facilitates easy
maintenance and
updates by
allowing seamless
installation,
configuration,
and
troubleshooting.

Functions of an Operating System

Process

Management

Security and

Access Control

User Interface

• Creates,

schedules, and

terminates

processes.

• Enforces user
authentication and
access control
mechanisms.

• Provides interfaces
for user
interaction,
including
command-line
interfaces (CLI)
and graphical user
interfaces (GUI).

• Manages process

synchronization

and

communication.

• Implements
encryption,
firewalls, and
intrusion detection

• Supports
input/output
devices such as

25 Xtreme Ends of PPS : Repeated PYQs

 systems to protect
system integrity
and confidentiality.

keyboards, mice,
and touchscreens.

• Allocates and

deallocates

process resources.

Question 8
Structures

Topic : Structures

2019 (15 Marks) [Ques. 4]

2022 (10 Marks) [Ques. { 6(a) }]

December 2023 (15 Marks) [Ques. 4]

26 Xtreme Ends of PPS : Repeated PYQs

[2019]

[2022]

[Dec 2023]

A collection of values of different data types .

Example :

For a student store the following :

name (String)

roll no (Integer)

cgpa (Float)

Syntax

struct student {

char name [100];

int roll;

float cgpa;

} ;

Defining Data

Type

27 Xtreme Ends of PPS : Repeated PYQs

#include<stdio.h>

#include<string.h>

//user defined

struct student {

 int roll;

 float cgpa;

 char name[100];

};

int main()

{

 struct student s1;

 s1.roll = 1234;

 s1.cgpa = 9.3;

 strcpy(s1.name, "Saumy");

 /***

 *We can also declare and assign the values in the following *

 * way *

 * "struct student s1 = {1234,9.3,"Saumy"}; *

 ***/

 printf("student name = %s\n", s1.name);

 printf("student roll no = %d\n", s1.roll);

 printf("student cgpa = %f\n", s1.cgpa);

 return 0;

}

struct student s1;

s1.cgpa = 9.3

28 Xtreme Ends of PPS : Repeated PYQs

Program to maintain record of ‘n’ students
#include <stdio.h>

#include <string.h>

#define MAX_STUDENTS 50

#define MAX_NAME_LENGTH 50

/***I used #define to define constants because it's a common way to declare

constants in C programs***/

/*** Structure to store student details ***/

struct Student {

 int rollNumber;

 char name[MAX_NAME_LENGTH];

 float marks;

 char grade;

};

/*** Function to calculate grade based on marks ***/

char calculateGrade(float marks) {

 if (marks >= 90)

 return 'A';

 else if (marks >= 80)

 return 'B';

 else if (marks >= 70)

 return 'C';

 else if (marks >= 60)

 return 'D';

 else

 return 'F';

}

int main() {

 struct Student students[MAX_STUDENTS];

 int n, i;

 char searchName[MAX_NAME_LENGTH];

 /*** Input the number of students ***/

 printf("Enter the number of students: ");

 scanf("%d", &n);

 /*** Input student details ***/

 for (i = 0; i < n; i++) {

 printf("\nEnter details for student %d:\n", i + 1);

 printf("Roll Number: ");

 scanf("%d", &students[i].rollNumber);

 printf("Name: ");

 scanf("%s", students[i].name);

 printf("Marks: ");

29 Xtreme Ends of PPS : Repeated PYQs

 scanf("%f", &students[i].marks);

 /*** Calculate grade ***/

 students[i].grade = calculateGrade(students[i].marks);

 }

 /*** Search for student marks by name ***/

 printf("\nEnter the name of the student to search for: ");

 scanf("%s", searchName);

 /*** Loop through the array to find the student ***/

 for (i = 0; i < n; i++) {

 if (strcmp(students[i].name, searchName) == 0) {

 printf("Marks of %s: %.2f\n", searchName, students[i].marks);

 break;

 }

 }

 if (i == n)

 printf("Student with name '%s' not found.\n", searchName);

 return 0;

}

Additional Short PYQs

2019 Short PYQs

30 Xtreme Ends of PPS : Repeated PYQs

Short 1 ➔

Algorithm Program
1. Used in Design time. 1. Used in

implementation time

2. We can use any
language (English or
Mathematical
notation)

2. We can use only
Programming language
(like C , C++ , Java etc.)

3. Algorithms are
independent of
Hardware/Software/
OS.

3. Programs are
independent of
Hardware/Software/
OS.

4. After writing an
Algorithm , we do
Analysis .

4. But in case of
Programs , we do
Testing.

Short 2 ➔

31 Xtreme Ends of PPS : Repeated PYQs

Logical AND

(&&)

Logical OR (||) Logical NOT (!)

Returns true if
both operands are
true.

Returns true if
either of the
operands is true.

Returns true if the
operand is false,
and vice versa. It's
a unary operator.

Short 3 ➔

Iteration Recursion
1. It is a process of
executing certain set of
instructions repeatedly ,
without calling the self
function.

1. It is a process of
executing certain set of
instructions repeatedly
by calling the self
function repeatedly.

2. Memory utilization is
less.

2. More memory
utilization.

3. Simple to implement. 3. Complex
implementation.

4. More line of code 4. Compactness

32 Xtreme Ends of PPS : Repeated PYQs

Short 4 ➔

Category Description Examples

Primitive

Data Types

Fundamental data types
directly supported by the
programming language.

Integers, floating-
point numbers,
characters,
Booleans.

Non-

Primitive

Data Types

Derived data types that are
composed of primitive data
types or other non-primitive
data types.

Arrays, structures,
pointers, classes,
interfaces.

Short 5 ➔

33 Xtreme Ends of PPS : Repeated PYQs

#include <stdio.h>

int main() {

 int num;

 printf("Enter an integer: ");

 scanf("%d", &num);

 if (num % 2 == 0) {

 printf("%d is even.\n", num);

 } else {

 printf("%d is odd.\n", num);

 }

 return 0;

}

Short 6 ➔

A switch statement in C is used to select one of several

code blocks to be executed, depending on the value of a

variable or an expression.

#include <stdio.h>

int main() {

 int choice;

 // Prompt the user for a choice

 printf("Enter a number between 1 and 3: ");

 scanf("%d", &choice);

 // Switch statement to execute different code blocks based on the value of

'choice'

 switch (choice) {

 case 1:

 printf("You chose option 1.\n");

34 Xtreme Ends of PPS : Repeated PYQs

 break;

 case 2:

 printf("You chose option 2.\n");

 break;

 case 3:

 printf("You chose option 3.\n");

 break;

 default:

 printf("Invalid choice. Please enter a number between 1 and

3.\n");

 }

 return 0;

}

In this example, the user is prompted to enter a number between 1 and 3.

The entered value is stored in the variable choice. The switch statement

then evaluates the value of choice and executes the corresponding code

block associated with each case label.

• If choice is 1, it prints "You chose option 1."

• If choice is 2, it prints "You chose option 2."

• If choice is 3, it prints "You chose option 3."

• If choice doesn't match any of the case labels (i.e., it's not 1, 2, or

3), it executes the code block associated with the default case,

printing "Invalid choice. Please enter a number between 1 and 3."

Each case label is followed by a colon (:) and the corresponding code

block. The break statement is used to exit the switch statement once a

matching case is found.

Short 7 ➔

35 Xtreme Ends of PPS : Repeated PYQs

getchar : It is used to input a single character

char x;

x=getchar();

putchar : It is used top print a single character

putchar(x);

Short 8 ➔

Pointer variables in C are declared by specifying the data

type they point to, followed by an asterisk (*), and then the

variable name. Initialization involves assigning the memory

address of another variable using the address-of operator

(&) or assigning NULL for uninitialized pointers. For

example:

int *ptr; // Declaration of an integer pointer

int num = 10;

ptr = # // Initialization by assigning the address of 'num' to 'ptr'

This declares a pointer variable ptr that points to an

integer, and initializes it to the address of the integer

variable num.

36 Xtreme Ends of PPS : Repeated PYQs

Short 9

O(𝑛2)

Short 10 ➔

1. fopen(): Used to open a file, providing options for

reading, writing, or appending data.

2. fclose(): Closes a file that was opened using fopen(),

ensuring that any buffered data is written to the file.

3. fread(): Reads data from a file into a buffer.

4. fwrite(): Writes data from a buffer to a file.

37 Xtreme Ends of PPS : Repeated PYQs

2022 Short PYQs

Short 1 ➔

1. Variable names can consist of letters, digits, and

underscores.

2. The first character must be a letter or an underscore.

3. Variable names are case-sensitive.

4. Keywords (reserved words) cannot be used as variable

names.

Short 2 ➔

38 Xtreme Ends of PPS : Repeated PYQs

The continue statement in C is used to skip the rest of the

loop's body and jump to the next iteration. It's commonly

used to avoid executing certain statements under specific

conditions.

For example :

#include <stdio.h>

int main() {

 int i;

 for (i = 1; i <= 5; i++) {

 if (i == 3) {

 continue; // Skip iteration when i equals 3

 }

 printf("%d\n", i);

 }

 return 0;

}

Short 3

The dangling else problem occurs in C with nested if

statements when the "else" part isn't clearly associated with

a specific "if" condition.

Imagine multiple if statements without curly braces:

if (condition1)

 statement1;

39 Xtreme Ends of PPS : Repeated PYQs

if (condition2)

 statement2;

else

 statement3; // Dangling else - unclear which if it belongs to

Here, the compiler might pair the else with the second "if"

(statement2), leading to unintended behavior.

This ambiguity can cause bugs and unexpected results.

Short 4

A string in C is an array of characters terminated by a null

character ('\0'). It represents a sequence of characters,

often used for storing and manipulating textual data.

Strings are declared as character arrays with a specified size

or as pointers to characters. Initialization can be done by

assigning a string literal enclosed in double quotes or by

assigning the address of a character array containing the

string data.

For example :

char str1[10] = "Hello"; // Declaration and initialization using array

char *str2 = "World"; // Declaration and initialization using pointer

40 Xtreme Ends of PPS : Repeated PYQs

Short 5 ➔

User-Defined Functions:

• Created by the programmer for specific tasks within

the program.

• Need to be written before being used in the program.

• Examples : calculateArea(length, width) - calculates area

based on provided values.

Built-in Library Functions :

• Can be directly called without defining them in the

program.

• Accessible through header files like <stdio.h>,

<math.h>, <string.h>, etc.

• Examples : printf(), sqrt(), strcpy() - for printing,

calculating square root, copying strings, respectively.

Short 6

41 Xtreme Ends of PPS : Repeated PYQs

Short 7

Static storage in C refers to variables declared with the static keyword.

These variables retain their values between function calls, unlike regular

local variables that are destroyed after exiting their scope.

2023 Short PYQs

Short 1

42 Xtreme Ends of PPS : Repeated PYQs

Correctness: It must produce accurate results for all valid

inputs.

Efficiency: It should execute quickly and utilize minimal

resources (memory, time).

Clarity: The steps should be clear, concise, and easy to

understand for both programmers and others.

Short 2 ➔

RAM (Random Access Memory):

• Volatile: Loses data when power is off.

• Faster: Provides high-speed access for active

programs and data.

• Temporary: Stores currently running programs and

data.

• Example: Stores the code you're writing in your C

editor.

ROM (Read-Only Memory):

• Non-volatile: Retains data even without power.

43 Xtreme Ends of PPS : Repeated PYQs

• Slower: Access speed is slower than RAM.

• Permanent: Stores essential instructions for booting

and hardware.

• Example: BIOS (Basic Input/Output System) on

your computer.

Short 3

A header file in C is a text file with the extension .h. It acts

like a reusable library containing:

• Function declarations: Prototypes outlining

function names, parameters, and return types.

• Macro definitions: Symbolic constants or shorthand

for code snippets.

• Data type definitions: Custom data types for specific

purposes.

Short 4

44 Xtreme Ends of PPS : Repeated PYQs

Time complexity in C language refers to the measure of

how the runtime of an algorithm grows as the size of the

input increases. It quantifies the amount of time an

algorithm takes to complete as a function of the input size.

Short 5 ➔

Local variables in C are declared within a block or function

and are only accessible within that block or function. They

are created when the block or function is entered and

destroyed when it exits. Global variables, on the other

hand, are declared outside of any function and can be

accessed and modified by any function in the program.

They have a global scope, meaning they are visible

throughout the entire program. Global variables persist

throughout the program's execution, while local variables

have limited scope and lifetime.

Short 6

45 Xtreme Ends of PPS : Repeated PYQs

Unary operators in C are special symbols that operate on a

single operand (value) to produce a new value. Common

unary operators include : Increment (++), Decrement (-

-) operators, etc.

Short 7

• Registers in C are high-speed memory locations within

the CPU. They offer much faster access than regular

memory.

• The register keyword suggests to the compiler that a

variable should be stored in a register if possible. This

can significantly improve performance for frequently

used variables.

46 Xtreme Ends of PPS : Repeated PYQs

Short 8

O(𝑛2)

Short 9

Feature Linker Loader

Function Combines multiple object files into an executable or
library

Loads the executable into memory for execution

Activities Symbol resolution, relocation, and final executable
generation

Address binding, relocation, setting up execution
environment

Dependency Operates after the compilation process Operates after the linking process

Output Generates a single executable or library file Loads the executable file into memory

Examples GNU ld, Microsoft Link, LLVM lld Windows Loader, Linux ELF loader

Short 10

47 Xtreme Ends of PPS : Repeated PYQs

5

Explanation:

• x is initialized to 5.

• The address of x is assigned to pointer a.

• printf("%d",x++); prints the current value of x,

which is 5, and then increments x by 1. However, the

increment operation x++ doesn't affect the value

printed by printf. So, 5 is printed.

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 1

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 7

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 2

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
major deviation

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 8

Saumy Saumy

Saumy Saumy

Saumy Saumy

Text Box
Xtreme Ends of PPS

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
direct analysis

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
atleast

Saumy Saumy
Text Box
atleast

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
(6 + 6 + 9 + (9 + 6)) + Part A

Saumy Saumy
Text Box
6 + 6 + 9 + (9 + 6)

Saumy Saumy
Text Box
6 + 6 + 9 + 9

Saumy Saumy

Saumy Saumy
Text Box
36 marks addition

Saumy Saumy
Text Box
30 marks addition

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
complete analysis

Saumy Saumy
Text Box
depth analysis

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
major deviation

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
range

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
approx. 50 marks addition

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 1

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Question 8

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
major deviation

Saumy Saumy

Saumy Saumy

Saumy Saumy
Text Box
Now, a repeated PYQ

Saumy Saumy

Saumy Saumy

