Total Pages: 03

011303

December 2024

B. Tech. (Third Semester) Digital Electronics (ESC-302)

Time: 3 Hours

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other.

Part A

- 1. (a) Implement the NAND gate using the NOR gate only.

 1.5
 - Define volatile and Non-volatile memory.

1.5

(c) Simplify the expression using Boolean algebra:

1.5

 $Y(A, B, C) = ABC + A\overline{B} + AB\overline{C}$

- (d) Draw block diagram of PLA. 1.5
- (e) What are the advantages of CMOS logic families used for implementing logic gates?

1.5

	(t)	Differentiate between JK and SR flip-flop.		
	,		1.5	
	(g)	Enlist significant specifications of ADCs.		
			1.5	
	(b)	What do you mean by quantization for A/D		
	11	converters ?	1.5	
	(1)	What is synchronous counter?	1.5	
	\bigcirc	What is a De-multiplexer?	1.5	
Part B				
2.	(a/)	Minimize the following function using	K-	
		map.	10	
		$F(A, B, C, D) = \sum m (0, 1, 3, 4, 7, 8, 9,$	11,	
	_	14,	15)	
	(b)	opposition Tibe i		
		driven by a 1MHz clock. Find the conversi	ion	
		time.	5	
3.	(a)	Convert the RS flip-flop to T-flip-flop.	5	
	(b)	Design BCD- counter using flip-flop.	10	
4.	\(j\)	What are the error detection and correction	on	
		codes ?	•	
	(ij)	Simplify the Boolean expression using	D'	
		Morgan's law		
		$Y(A, B) = (\overline{A + B}) (\overline{\overline{A} + \overline{B}})$		

(iii) Implement Boolean expression using only universal gates.

$$Y = (\overline{(A + B)C}).D$$

- (iv) Interfacing CMOS and TTL Devices.
- (v) Convert Boolean function into standard SOP.

$$Y(A, B, C) = AB + A\overline{C} + BC$$
 15

- (a) Explain complex programmable logic devices.
 - (b) Briefly explain the working of Dynamic RAM cell. Also explain MROM, PROM, EPROM, EEPROM.
- 6. (a) Implement the following function using 8:1 MUX: 10 $F(A, B, C, D) = \sum m(0, 1, 3, 4, 7, 8, 9, 11, 14, 15)$
 - (b) Explain 4-bit buffer Register with suitablelogic diagram. 5
- Explain 3-bit R-2R ladder r type DAC, converter with suitable diagram. And give its advantages and disadvantages and give specifications of DAC.

15