words. Calculate how many bits are required for addressing the main memory? Also, how many bits are needed to represent the TAG, SET and WORD fields?

- Explain the working of a DMA controller with the help of block diagram. What are the various modes of transfer used by DMA? 10
- Write short notes on the following: 15
 - Priority Interrupts (a)
 - Write-back and Write-through policies
 - RISC vs. CISC instruction sets (c)
 - Hardware interrupts (d)
 - Hierarchical memory organization

Roll No.

Total Pages: 04

May 2024 B. Tech. (CE/CE(HINDI)/IT/CSE(AIML)) (Fourth Semester)

Computer Organization and Architecture (PCC-CS-402)

Time: 3 Hours]

(7-M24-04/17) C-003402

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other.

Part A

- What do you mean by stored program control (a) 1.5 concept?
 - 1.5 What is program status word? (b)
 - Explain the concept of Cache Coherence. 1.5
 - Differentiate between computer architecture and computer organization. 1.5
 - Draw the flowchart explaining the process of 1.5 non-restoring division algorithm.

(f)	Bring out the differences between 8085 and
	8086 microprocessors.
(g)	Briefly explain the different 1/O interfaces -
	PCI, SCSI, USB.
(h)	How can we calculate the speedup and
	throughput of a system ?
(i)	An instruction is stored at location 200 with
	address field located at 201. The value of
	address field is 320. A processor register R1
	contains the value 500. Calculate the effective
	address if the addressing mode is: 1.5
	(i) Direct
	(ii) Relative
	(iii) Register indirect
(j)	What is memory interleaving? How is it
	useful?
Part B Word of Lew (a)	
(a)	Explain Flynn's classification of parallel
	processors. 5
(b)	Represent the decimal number (-262.125) ₁₀
	in single precision floating point format. 5
(c)	Explain the ripple carry adder/subtractor using
	the circuit diagram. 5

- 3. (a) Explain stack based CPU organization. Use a suitable example to demonstrate the types of instruction formats used in this type of organization?
 - (b) Obtain the result of multiplying (-6)₁₀ and (-9)₁₀ using booth's multiplier. Draw the flowchart to justify the steps used in obtaining the result.
- 4. (a) What is asynchronous data transfer? Explain any *one* method used in asynchronous data transfer in detail.
 - (b) What is micro-programmed control unit?

 How to obtain address sequencing? 10
- 5. (a) Explain the 16-bit status/flag register in 8086 microprocessor. If an addition operation is performed on two values 81 and FE (hexadecimal), what is the resultant value of this register?
 - (b) What are the various pipeline hazards that are likely to occur in computer architecture? 10
- 6. (a) A block-set associative cache memory consists of 128 blocks divided into four block sets. The main memory consists of 16,384 blocks and each block contains 256 eight bit