

Nov 2025(Sessional-2)
Computer Engineering V SEMESTER(CE51)
Machine Learning (PCC-DS-601)

Time: 1.5 Hours

Max. Marks:30

Q 1	Discuss Deep Learning. How it is different from traditional learning.	3 CO4
Q2	Compare Bagging, Boosting, and Random Forest in terms of bias, variance, and learning approach.	3 CO3
Q3	Differentiate between linear and non-linear data. In which case kernel is required? Explain different types of kernels.	3 CO4
Q4	Discuss Statistical Learning Theory and applications.	3 CO4
Q5	Given the following dataset and $k = 2$, perform clustering by the k-means clustering algorithm. Dataset (2D Points) $P1=(2,3)$, $P2=(5,4)$, $P3=(3,6)$, $P4=(8,7)$, $P5=(6,2)$ centroids: $C1 = (2,3)$, $C2 = (6,2)$	8 CO4
Q6	What is matrix factorization and matrix completion? Discuss the situations where matrix completion is required.	2 CO3
Q7	Explain the PCA (Principal Component Analysis) algorithm. Suppose the data consists of 2-dimensional points: $\{(-3,-3), (-1,-1), (1,1), (3,3)\}$ Perform PCA manually to reduce the data from 2D to 1D and compute the principal component.	8 CO4