

**J.C BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA
FARIDABAD**

1st SESSIONAL EXAMINATION, Sept2025

B.Tech Semester: CE51

Subject: Formal Languages, Automata and compiler Design

Paper Code: PCC-CS-502

Note: Attempt any three questions.

Time: 1 hr 30 min

Maximum Marks: 30

CO1	Q1	a) If $L = (1^3 + 1^5)^*$, then what is the largest string possible that can not be generated by L ? 5 marks				
		b) How many palindrome of length 12 are there over $\Sigma = \{0,1\}$ 5 marks				
CO2	Q2	Generate grammar for the following languages: <table border="0"> <tr> <td>a) $L = \{a^n \text{ such that } n \bmod 3 \neq 0\}$ 5 marks</td> </tr> <tr> <td>b) $L = \{a^{2n}b^{3n+2} \text{ such that } n \geq 0\}$ 5 marks</td> </tr> </table>	a) $L = \{a^n \text{ such that } n \bmod 3 \neq 0\}$ 5 marks	b) $L = \{a^{2n}b^{3n+2} \text{ such that } n \geq 0\}$ 5 marks		
a) $L = \{a^n \text{ such that } n \bmod 3 \neq 0\}$ 5 marks						
b) $L = \{a^{2n}b^{3n+2} \text{ such that } n \geq 0\}$ 5 marks						
CO1	Q3	Design Non Deterministic Finite Automata for the following languages: <table border="0"> <tr> <td>a) $L = \{a^n b^{2n} \text{ such that } n \geq 0\}$ 5 marks</td> </tr> <tr> <td>b) $L = \text{set of all strings ending with ab, bc or ca over } \Sigma = \{a,b,c\}$ 5 marks</td> </tr> </table>	a) $L = \{a^n b^{2n} \text{ such that } n \geq 0\}$ 5 marks	b) $L = \text{set of all strings ending with ab, bc or ca over } \Sigma = \{a,b,c\}$ 5 marks		
a) $L = \{a^n b^{2n} \text{ such that } n \geq 0\}$ 5 marks						
b) $L = \text{set of all strings ending with ab, bc or ca over } \Sigma = \{a,b,c\}$ 5 marks						
CO1	Q4	Design Deterministic Finite Automata for the following languages: <table border="0"> <tr> <td>a) $L = \text{set of all binary strings containing } 1011 \text{ as substring.}$ 5 marks</td> </tr> <tr> <td>b) $L = \{w \in \{0,1\}^* \mid d(w) \bmod 3 = 0\}$ 5 marks</td> </tr> <tr> <td>where $d(w) = \text{decimal representation of } w.$</td> </tr> <tr> <td>Ex. $d(001) = 1$</td> </tr> </table>	a) $L = \text{set of all binary strings containing } 1011 \text{ as substring.}$ 5 marks	b) $L = \{w \in \{0,1\}^* \mid d(w) \bmod 3 = 0\}$ 5 marks	where $d(w) = \text{decimal representation of } w.$	Ex. $d(001) = 1$
a) $L = \text{set of all binary strings containing } 1011 \text{ as substring.}$ 5 marks						
b) $L = \{w \in \{0,1\}^* \mid d(w) \bmod 3 = 0\}$ 5 marks						
where $d(w) = \text{decimal representation of } w.$						
Ex. $d(001) = 1$						