- 5. (a) Draw the pole zero configuration of a lag compensator on S-plane. Compare lag and lead compensators.5
 - (b) Draw Bode plot of the transfer fn. $G(s) = 75(1 + 0.2s)/s (s^2 + 16s + 100)$. Find gain crossover and phase crossover frequency and comment on its stability. 10
- 6. (a) Construct the state model of the system characterized by the differential equation. Give a block diagram representation of the state space model:

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = 0$$

- (b) Write and prove properties of State transition matrix.
- 7. Write short notes on any two of the following:
 - (a) Optimal Control
 - (b) Controllability and Observability
 - (c) M and N Circles.

Roll No.

Total Pages : 04 008606

May 2024

B. Tech. (ECE) (Sixth Semester) Control System (EC-601)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other. Semi-logarithmic graph paper will be required.

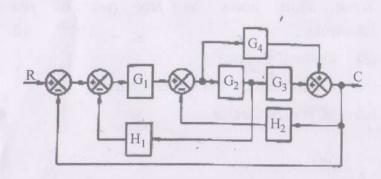
Part A

- 1. (a) Write the rule of moving the summing point ahead of the block.

 1.5
 - (b) What is feedback? Which type of feedback is employed in control system? 1.5
 - (c) List the time domain specifications. 1.5
 - (d) What is the effect of PI controller on the system performance?

 1.5
 - (e) What is phase and gain crossover frequency?

190


- (f) The damping ratio and natural frequency of oscillation of a second order system is 0.5 and 8 rad/sec respectively. Calculate resonant peak and resonant frequency.
- (g) Define BIBO stability. 1.5
- (h) What is centroid? How is it calculated?
- (i) What is State Space? 1.5
- (j) Draw the Bode plot of a lead compensator.

 1.5

Part B

- 2. (a) A unity feedback system has an open loop transfer function: 10 $G(s) = K/s(s^2 + 8s + 32).$ Sketch the Root Locus and determine the dominant closed loop poles with $\zeta = 0.5$
 - (b) The characteristic equation for a feedback control system is given as:
 5
 5 + 2s⁴ + 24s³ + 48s² 25s 50 = 0
 Determine the location of roots and comment on the stability of the system.

- 3. (a) For a unity feedback system having open loop transfer fn. as : 5 $G(s) = K(s+2)/s^2(s^2+7s+12). \text{ Determine :}$
 - (i) Type of the system
 - (ii) Error constants K_p , K_v , K_a
 - (iii) Steady state error for parabolic input.
 - (b) The open loop transfer fn. of a unity feedback system is given by: G(s) = 1/s(1+s) (1+2s). Sketch the polar plot and determine gain margin and phase margin.
- 4. (a) Find C(s)/R(s) of the system: 10

(b) What is signal flow graph? Explain Mason's gain formula.

3