		· ·	
5.	(a)	What is pulse time modulation? Explain one method	i
		of generation of PWM and PPM.)
	(b)	Derive an expression for signal to quantization	1
		noise ratio for PCM uses uniform quantization	1
		techniques. (4))
	(c)	Draw the compressor and expander characteristics	S
		and also discuss A law of companding and μ law of	f
		companding. (5))
6.	(a)	The first stage of a two stage amplifier has a voltage	3
		gain of 10, input resistance 600 Ω , equivalent noise	•
		resistance 1600 Ω and output resistance 27 $k\Omega$	
		For the second stage these values are 25, 81 $k\Omega$,
		10 k Ω and 1 M Ω respectively. Find the equivalent	t
		noise resistance of this two stage amplifier. What do)
		you mean by delta modulation? (8))
	(b)	Discuss the advantages and disadvantages of delta	ì
		modulation. Also explain adaptive delta modulation.	
		(7))
7.	Write short notes on following:		
	(a)	Calculation of noise figure. (5)	
	(b)	TDM and FDM. (5)	
	(c)	Square law diode modulation. (5)	

Roll No.

Total Pages: 4

015305

January 2023 B.Tech. (ENC) III SEMESTER Analog Communication (ECP-304)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Differentiate between continuous time signal and discrete time signal. (1.5)
 - (b) How is the height of antenna related to modulation? Also explain how modulation helps in reducing the height of antenna. (1.5)
 - (c) If $x(t) \leftrightarrow X(\omega)$, use the Fourier transform properties, find the Fourier transform of y(t) = x(3t 6). (1.5)
 - (d) A signal is sampled at Nyquist rate of 8 kHz and is quantized using 8 bit uniform quantizer. Calculate the bit rate, SNRq and bandwidth. (1.5)

- (e) Determine the Nyquist rate and Nyquist interval for the signal:
 - $x(t) = 3 \cos (50 \pi t) + 10 \sin (300 \pi t) + \cos (100 \pi t)$ (1.5)
- (f) Find the overall noise figure of a three stage cascaded amplifier, each stage having a power gain of 10 dB and noise figure of 6 dB. (1.5)
- (g) The maximum deviation allowed in an FM broadcast system is 75 kHz. If the modulating signal is single tone sinusoidal of frequency 8 kHz. Determine the bandwidth of FM signal. (1.5)
- (h) Determine the power content of each of sidebands and of the carrier of an AM signal that has a percent modulation of 75% and contains 1500 W of total power. (1.5)
- (i) Distinguish between uniform and non-uniform quantization. (1.5)
- (j) Calculate the frequencies available in the frequency spectrum of AM wave, when 2 MHz carrier is modulated by two sinusoidal signals of 3 kHz and 2 kHz. (1.5)

PART-B

- 2. (a) State and prove following properties of Fourier transform:
 - (i) Frequency shifting property.
 - (ii) Convolution in time domain. (6)

- (b) Find the Fourier transform of gate function of amplitudeA and pulse width τ. (5)
 - (c) Find the inverse Fourier transform of

$$X(\omega) = 2[\delta[\omega - 1) - \delta(\omega + 1)] + [\delta(\omega - 2\pi) + \delta(\omega + 2\pi)]$$

$$(4)$$

- 3. (a) What is balanced modulator? Sketch a balanced modulator circuit and explain its working. Derive the expression for its output voltage. (7)
 - (b) Explain the circuits of envelope diode detector. Explain how it works and mention the condition to be satisfied to avoid clipping in the output.(8)
- (a) Explain the difference between narrow band FM and wide band FM. Derive an expression for narrow band FM. Also give statement of Carson's rule.
 - (b) Draw the circuit diagram of varactor diode modulator and explain its working. (5)
 - (c) A frequency modulated signal describe by the equation: $S(t) = 10 \cos \left[2\pi \times 10^6 \ t + 0.1 \sin \left(2000 \ \pi t\right)\right]$
 - (i) Find the power of modulated signal.

3

- (ii) Find the frequency deviation.
- (iii) Estimate the bandwidth of S(t). (3)