- (b) Verify Green's theorem to evaluate the line integral $\int_C (2y^2 dx + 3x dy)$ where C is the boundary of the closed region bounded by y = x and $y = x^2$. (8)
- 7. (a) Find the directional derivative of V^2 , where $\vec{V} = xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$ at the point (2, 0, 3) in the direction of the outward normal to the sphere $x^2 + y^2 + z^2 = 14$ at the point (3, 2, 1). (8)
 - (b) If ā is a constant vector show that

$$\vec{a} \times (\vec{\nabla} \times \vec{r}) = \vec{\nabla} (\vec{a} \cdot \vec{r}) - (\vec{a} \cdot \vec{\nabla}) \vec{r}.$$
 (7)

Roll No.

Total Pages: 4

305304

December, 2019 B.Tech. (ECE/EIC) - III SEMESTER Mathematics-III (BS301)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) Express $f(x) = 1 + 2x 3x^2 + 4x^3$ in terms of Legendre polynomial. (1.5)
 - (b) State and prove shifting property of Fourier transform. (1.5)
 - (c) Express $f(x) = 16x^4 + 4x^3 + 2x^2 + 4x + 5$ in terms of Chebyshev polynomial of first kind. (1.5)
 - (d) Find the Fourier transform of $\frac{1}{x}$. (1.5)

305304/360/111/320

[P.T.O. 18/12

- (e) Find the Z-transform of $(k) = \frac{1}{(k+1)}, k \ge 0$. (1.5)
 - (f) Find the Laplace transform of $(t) = \sin at at \cos at$. (1.5)
 - (g) Define convolution theorem for Laplace transform. (1.5)
 - (h) Find $\nabla \cdot \nabla \phi$, where $\phi = 6x^3y^2z$. (1.5)
 - (i) Show that the vector field defined by $\vec{F} = (\sin y + z)\hat{i} + x(\cos y z)\hat{j} + (x y)\hat{k} \text{ is irrotational.}$ (1.5)
 - (j) Evaluate the line integral

$$\int_{C} [(x^{2} + xy)dx + (x^{2} + y^{2})dy],$$

where C is the square formed by the lines $x = \pm 1$, $y = \pm 1$. (1.5)

PART - B

- 2. (a) Prove that $\int_{-1}^{+1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 1}$. (7)
 - (b) Prove that $\int_0^\infty \frac{dt}{(a^2 + t^2)(b^2 + t^2)} = \frac{\pi}{2ab(a+b)}$. (8)

- 3. (a) Find the inverse Laplace transform of $\log \frac{s^2+1}{s(s+1)}$.
 - (b) Solve the equation $\frac{d^2y}{dt^2} + \frac{dy}{dt} 2y = 2\cos 3t 11\sin 3t$ given that y(0) = 0 and y'(0) = 6 by transform method. (8)
- 4. (a) Find the Fourier transform of the function f(x) defined as

$$f(x) = \begin{cases} 1 + \frac{x}{a}, & \text{for } -a < x < 0 \\ 1 - \frac{x}{a}, & \text{for } 0 < x < a \\ 0, & \text{otherwise} \end{cases}$$
 (8)

- (b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 6, t > 0 subject to conditions $u_x(0, t) = u_x(6, t) = 0$, u(x, 0) = 2x. (7)
- 5. (a) Find the Z-transform of $c^k \cos ak$, $k \ge 0$. (7)
 - (b) Find the inverse Z-transform of the function

$$f(z) = \frac{3z^2 + 2z}{z^2 - 3z + 2} \text{ for } 1 < |z| < 2.$$
 (8)