Sr. no. 015301

January 2023 B. Tech 3rd Semester (ENC/ECE/EEIOT) Mathematics - III (BS301)

Time: 3 Hours

Max. Marks: 75

Instructions:

It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
 Answer any four questions from Part - B in detail.
 Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

QI	(a) Find $L(5)$, where L denotes Laplace trasform.	(1.5)
	(b) Write shifting property of Fourier transform.	(1.5)
	(c) Describe trigonometric polynomial.	(1.5)
	(d) What is the value of $T_1(x)$, where $T_n(x)$ is the Chebyshev polynomial of first order n ?	kind of (1.5)
	(e) Give two examples of orthogonal polynomial.	(1.5)
	(f) Find $Z(a^n)$, where Z denotes Z transform.	(1.5)
	(g) Find $\nabla \phi$, if $\phi = \log(x^2 + y^2 + z^2)$.	(1.5)
	(h) State Stoke's theorem.	(1.5)
	(i) Define irrotational vector.	(1.5)
	(j) What is the greatest rate of increase of $u = xyz^2$ at the point $(1,0,3)$?	(1.5)
	PART-B	
Q2	(a) Find the Laplace transform of $(1 + te^{-t})^3$.	(7)
~-	(b) Find the inverse Laplace transform of $\log \frac{s+1}{s-1}$.	(8)
Q3	(a) Evaluate $\int_0^\infty te^{-3t} \sin t dt$ by using Laplace transform.	(7)
T	(b) Solve the following differential equation by Laplace transform method	(8)

when x = 2 and $\frac{dx}{dt} = -1$ at t = 0.

 $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$

 $f(x) = \begin{cases} 1 - x^2, |x| \le 1, \\ 0, |x| > 1 \end{cases}$

(7)

- (b) Find the Fourier cosine transform of e^{-x^2} and hence evaluate Fourier sine transform of (8)
- Q5 (a) Find the Z transform of $3n 4\sin\frac{n\pi}{4} + 5a$. (7)
 - (b) Find the inverse Z transform of $\frac{2z^2+3z}{(z+2)(z-4)}$.
- Q6 (a) A vector field is given by $\mathbf{F} = \sin y \,\hat{i} + x(1 + \cos y) \,\hat{j}$. Evaluate the line integral over a
 - (b) Verify Green's theorem for $\int_C [(xy+y^2)dx+x^2dy]$, where C is bounded by y=x and (8)
- Q7 (a) Evaluate curl F at the point (1,2,3), given $F = \text{grad}(x^3y + y^3z + z^3x x^2y^2z^2)$.
 - (b) Evaluate $\int \mathbf{F} d\mathbf{s}$ where $\mathbf{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ and S is the surface bounded by the region $x^2 + y^2 = 4$, z = 0 and z = 3, by applying Divergence theorem.