Roll No.

Total Pages: 3

015602

May 2023 B.Tech. (ENC) VI SEMESTER Digital Signal Processing (ECC-04)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1.	(a)	How is the unit ramp signal defined in d	iscrete-time
	, ,	function?	(1.5
	(b)	What is zero padding technique?	(1.5
	(c)	In which condition of ROC is a linear time-invarian	

- system called BIBO stable? (1.5)
 (d) Mathematically relate s-plane and z-plane. (1.5)
- (e) What is ROC of a system? (1.5)
- (f) List various limitations of IIR filter design by approximation of derivatives. (1.5)
- (g) When a signal x[n] is anti symmetric or odd? (1.5)
- (h) List basic properties of DFT. (1.5)

344[P.T.O.

- (i) Briefly discuss elliptic filters. (1.5)
- (j) In FIR filters, which parameters remains unaffected by the quantization effect? (1.5)

PART-B

- 2. (a) State and prove Final Value Theorem of Z-Transform. (10)
 - (b) Explain parametric spectral estimation. (5)
- 3. (a) Describe non-probability sampling methods. (5)
 - (b) For analog transfer function H(s) = 2 / (s² + 4s + 2), determine H(z) using impulse variant transformation if (a) T = 1 second and (b) T = 0.1 second. (10)
- 4. A continuous time filter has frequency response $H(F) = 1 / (1 + (12 \pi F / 1000))$. Determine the passband and stopband frequencies in Hz, assuming a passband ripple of 1dB and attenuation of 30 dB in the stopband. Also, determine the half power frequency F_C . (15)
- 5. (a) What are applications of DSP? (5)
 - (b) Consider the sequence $x[n]=\{2,1,-1,-3,0,1,2,1\}$. Calculate the FFT. (10)
- 6. (a) A Digital Filter is defined by the difference equation $y(n) = 0.99 \ y(n-1) + x(n)$. Make a plot of its magnitude. Which type of filter it is? (10)
 - (b) Explain Park-McClellan's Method. Where, and how, it is being applied? (5)

7. A 4-th order Butterworth filter has cut off frequency $\Omega_c = 200 \,\pi$ rad./sec. Apply Bilinear Transformation with sampling frequency $F_s = 1$ kHz, determine zeros and poles in the z-plane. (15)