December 2022 B.Tech. (HE) - V SEMESTER Design of Machine Elements-I (PCC-ME-503/21)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other.
- Use of Design data Handbook is allowed.

PART-A

1.	(a)	Explain different material properties.	(1.5)
	(b)	What do you mean by stress concentration?	(1.5)
	(c)	What are different type of screw threads?	(1.5)
	(d)	What are applications of cotter joints?	(1.5)
(40)	(e)	What is a clutch?	(1.5)
	(f)	Classify couplings.	(1.5)

- (g) What is the function of key? Explain. (1.5)
- (h) What is nipping in leaf spring? Discuss its role. (1.5)
- (i) Distinguish between elosely coiled & open coiled helical springs. (1.5)
- (j) Differentiate between shaft, spindle and axle. (1.5)

PART-B

- 2. (a) What is fatigue life? What are different concepts of fatigue failure and what are the factors that affect endurance limit of a machine part? (10)
 - (b) What are factors affecting Factor of safety? (5)
- (a) Explain the design procedure for an eccentrically loaded riveted Joint having six rivets symmetrically.
 - (b) A knuckle joint is required to withstand a tensile load of 25 kN. Design the joint if permissible stresses are: Tensile = 56 MPa, Shear: 40 MPa and Crushing = 70 MPa.

(5)

4. Design a muff coupling to connect two shafts for 25 kW at 360 rpm. The shaft and key are made of plain carbon steel ($S_y = 400 \text{ N/mm}^2$). The sleeve is made of grey cast iron ($S_{ut} = 200 \text{ N/mm}^2$). The F.O.S. for shaft and key is 4 while for sleeve is 6. (15)

- 5. (a) What are different types of keys? (5)
 - (b) A propeller shaft is required to transmit 50 kW power at 600 rpm. It is a hollow shaft having an inside diameter 0.8 times of outside diameter. It is made of steel (S_y=380 N/mm²) and FOS is 4. Calculate inside & outside diameter of the shaft. (10)
- 6. (a) Design a leaf spring for the following specifications:
 Total Load = 140 kN. Number of springs = 4,
 Number of leaves = 10, Span = 1000 mm. Permissible
 deflection = 80 mm, E = 200 kN/mm². Allowable
 stress in spring material as 600 MPa. (10)
 - (b) Explain the design procedure of a single plate friction clutch for both uniform pressure and uniform wear concepts. (5)
- 7. An engine developing 45 kW at 1000 rpm is fitted with a cone clutch. The cone has a face angle of 12.5° and a maximum mean diameter of 500 mm. The c.o.f is 0.2. The normal pressure on clutch face is not to exceed 0.1 N/mm². Determine: 1 the face width required, and 2 the axial spring force necessary to enlarge the clutch.