December 2024

B.Tech. (ME) (Fisch Semester)

Refrigeration and Air-conditioning (PCC-ME-504-21)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions

(1.5 marks each) of Part A in short. Answer any

four questions from Part B in detail. Different
sub-parts of a question are to be attempted
adjacent to each other.

Part A

- 1. (a) What is difference between wet bulb temperature and dew point temperature ?1.5
 - (b) What is Gross Sensible heat factor? 1.5
 - (c) Why multistage compression used in vapoure compression refrigeration system? 1.5
 - (d) What is Contact factor for cooling coils?

1.5

(e)	What is the effect of undercooking of
	refrigerant in vapour Compression
	refrigeration system ? 1.5
(f)	What is the effect of super heating of
	refrigerant vapoures in VCRS? 1.5
(g)	What is difference between Sensible Heat
	and latent heat ?
(h)	Differentiate between primary refrigerants and
	secondary refrigerants. 1.5
(i)	Why and where is the motive steam used?
	1.5
j)	What are the uses of Heat Pump? 1.5
	Part B
(a)	Discuss different factors affecting the choice
2.20	of refrigerants used in vapoure compression
	system. 5
b)	The following data refers to a reduced ambient
	air refrigeration system used for an aircraft:
	Speed of aircraft = 1500 km/h, Ambient
	pressure = 0.8 bar, Ambient temperature =

0°C, Ram efficiency = 100%, Pressure of cooled air leaving the first cooling turbine = 0.8 bar, Temperature of cooled air leaving the heat exchanger = 100°C, Pressure ratio of the main compressor = 3 Pressure loss between the outlet of second cooling turbine and the cabin = 0.1 bar, Pressure in the cabin = 1 bar, Temperature in the cabin = 22°C, Load in the cabin = 10 TR, Isentropic efficiency of compressor = 85%, Isentropic efficiency of both colling turbines = 80%. Find: (i) mass flow of the air passing through the second cooling turoine; (ii) quantity of Ram air passing through the heat exchanger, if the rise in temperature is limited to 80 K and (iii) C.O.P. of the system. 10

- (a) Discuss the Effects of subcooling and superheating operating conditions on COP in a vapoure compression system.
 - (b) An ammonia refrigeration machine works between the temperatures of -10°C and 30°C. The vapour leaves the compressor in dry and saturated condition and temperature

of the liquid refrigerant leaving the condenser is 30°C. Find the kilograms of ice produced per kW-hour assuming actual COP is 65% of theoretical. The quantity of heat carried per kg of ice is 370 kJ/kg. The properties of Ammonia are given below:

Temp °C	$h_f(kJ/kg)$	h _{fg} (k]/kg)	s _f (kJ/kg-K)	s, (kJ/kg·K)
30	28.5	290.8	0.099	1.055
-10	-8.84	323	-0.033	1.191

- 4. (a) Describe the steam jet refrigeration system and thermoelectric refrigeration system and its uses.
 - (b) Explain the construction and working of Lithium-Bromide water absorption refrigeration system and compare it with Water-Ammonia refrigeration system. 10
- 5. (a) Explain the Gibbs-Dalton law and how is it uses in air conditioning and also the properties of moist Air?

 5. (a) Explain the Gibbs-Dalton law and how is it uses in air conditioning and also the properties of moist Air?
 - (b) The air at 40°C DBT and 35% R.H is passed through adiabatic humidifier and it comes out with 36.4°C DBT and fully saturated. Find the quality of water vapour added per kg of dry air. Assume air pressure to be 1.013 bar.

10

- 6. (a) Describe the functions of the Temperature sensors, Pressure sensors, and Humidity sensors in vapoure compression refrigeration system.
 - (b) Explain the terms static and velocity pressure in a duct system used for air-conditioning.
 Derive an expression for continuity equation in ducts.
- 7. An air conditioned Room is maintained at 25°C DBT and 55% RH. The outdoor conditions are 40°C DBT and 25°C WBT. The sensible heat load in the space is 24.5 kW. The air supplied to the conditioned space as saturated air at 10°C and the equipment consists of an air washer. The air entering the air washer contains 25% outdoor air and 65% re-circulated air. Determine (i) volume of air supplied to the space per minute, (ii) latent heat load in the space, (iii) cooling load of air washer.

15

350