December 2023

B. Tech (RAI) 5th SEMESTER

Digital Signal Processing (PCC-RAI-502-21)

Time:	3	H	0	ur	S
Instru					

Q6

Q7

form. Explain with suitable example.

(b) Multirate Digital Signal Processing

Write short note on with example:

(a) Z-Transform

Max. Marks:75

(15)

(15)

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Any other specific instructions

		PART-A	
Q	1 (a	State and prove scaling property of DFT.	(1.5
	(b	Transform.	(1.5)
	(c	and causanty of signal:	(1.5)
	(d	the circular convolution,	(1.5)
	(e		(1.5)
	(f)	of the fourter transform in signal processing.	(1.5)
	(g)	Derive the twiddle factor's value for N/2 and N point values of DFT.	(1.5)
	(h)		(1.5)
	(i)	What do you mean by windowing technique of digital filters?	(1.5)
	(j)	Draw the frequency response of a Low pass, High pass and Band pass filters.	(1.5)
02	(a)	PART -R	(1.5)
	(b)	an example	(7.5) (7.5)
Q3	(a)	1 Birch below.	(7.5)
		$x(n)=\{2,1,1,0,5\}$ and $h(n)=\{1,1,1,1\}$ Determine the convolution of the sequences using	
		[1]Tabular method	
	(b)	(ii) Circular method Determine the inverse z-transform of $X(z)=z/(3z^2-4z+1)$. If the ROC are	3.
		(1) Z >1	(7.5)
		(ii) z <1/3 (iii)1/3< z <1	
04		시프 (1986) 이번 그 아니라는 이 보고 하는 그리고 하는 아이를 보고 있다. 그	
Q4		Derive the bilinear transformation technique used to transform an analog IIR filter to digital IIR filter.	(15)
		Use bilinear transformation method to obtain H(Z) for T= 1 sec if:	
		$H(s) = 1/(s^2 + \sqrt{2} s + 1)$	
Q5	(a)	A filter is to be designed with following desired frequency response: $H_d(e^{jw}) = \{ e^{-j2w} , -\pi/4 \le w \le \pi/4 \}$	(7.5)
		0 .π/4< w ≤π 1	
		Determine the filter coefficients $hd(n)$ if window function is defined as: $W(n)=\{1,0\leq n\leq 4\}$	
		0 ,otherwise }	
		Also, Determine the frequency response H(e ^{jw}) of designed filter.	
	(b)	Differentiate between Butterworth and Chebyshev filters. Also write the formula of their	Table (Section
		impulse response and draw the Gain vs Frequency graph.	(7.5)

How a system of digital filters can be designed with the help of Direct, Cascade and Parallel